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Abstract  

In vitro fertilization (IVF) is an important assisted reproductive technology (ART) that relies 

on accurate embryo assessment and follicle tracking to improve success rates. Recent advances 

in deep learning and 3D visualization have provided promising solutions to automate and 

improve both embryo and follicle assessment. This study proposes a deep learning framework 

for IVF that includes preprocessing, segmentation, and classification techniques. Preprocessing 

includes non-local means (NLM) filtering and normalization to reduce noise while preserving 

important morphological details in 3D embryo and follicle imaging. This step ensures 

improved contrast and clarity, which enables better downstream processing. For segmentation, 

a U-Net-based framework is used to precisely define reproductive structures such as oocytes, 

embryos, and follicles, which facilitates accurate localization and feature extraction. 

Segmentation plays a key role in identifying regions of interest and aiding subsequent 

classification. By focusing on the segmented regions, the R-CNN model distinguishes between 

viable and non-viable embryos, as well as follicle maturity stages, and automates the grading 

process with high accuracy.  In this approach used as two datasets as 3D ultrasound images and 

3D OCT images. The proposed 3D deep learning approach provides an automated, objective, 

and efficient method for embryo and follicle assessment, which reduces the subjectivity of 

manual assessment. This study highlights the importance of deep learning-based 3D vision 

techniques in revolutionizing IVF procedures and advancing reproductive medicine. 

Keywords: OCT, ultrasound images, NLM, Normalization, Follicle monitoring, Faster RCNN 

1) Introduction  

A widespread trend toward activity and career-centric lifestyles is seen in the modern period of 

fast socioeconomic advancement. It seems that the conventional focus on family life 

particularly about having and raising children has diminished. Among contemporary women, 

this phenomenon is especially noticeable. Infertility is a significant worry in our age because 

of the apparent worldwide trend of delaying motherhood. According to real-world statistics, 

one in six couples globally is thought to struggle with sterility 1 . 

-------------------- 

1 Fu K, Li Y, Lv H, Wu W, Song J, Xu J. Development of a model predicting the outcome 

of in vitro fertilization cycles by a robust decision tree method. Front Endocrinol 2022; 

13:877518. 
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According to the National Center for Health Statistics, infertility affects around 8.8% of people 

in the United States 2 . In terms of non-US locations, infertility affects 8–12% of couples, with 

certain regions seeing a significant increase in occurrence, up to 30% 3 . Infertility affects 10% 

to 15% of couples in Taiwan, which has some of the lowest birth rates on the earth. The 

standard time to diagnose sterility is 2.9 years, which is much longer than the WHO's one-year 

criterion, and treatment frequently begins 1.5 years later, according to a 2021 study 4 . Of the 

49,652 treatment cycles in 2021, 8.3% were due to male factors, 55.2% to female factors, 

32.2% to combination factors, and 4.3% to unexplained reasons, according to data from the 

Ministry of Health and Welfare. 

Assisted reproductive technology, or ART, is the term used to describe fertility treatments that 

use eggs or embryos. To do this, a woman's ovaries must have their eggs surgically removed, 

fertilized in a laboratory, and then given back to the original or a different woman. The Fertility 

Clinic Success Rate and Certification Act of 1992 states that techniques like timed intercourse 

and intrauterine insemination, in which only sperm are handled or no egg retrieval is expected, 

are exempt from these standards. As such, this evaluation does not address IUI or timed 

intercourse. IVF success rates have skyrocketed in spite of significant technological 

breakthroughs. In cycles without preimplantation intrinsic testing for aneuploidy, the 

implantation rate is just about 50%. At its peak, this probability rises to over 60% even with 

PGT-A 5. The live birth rate, which typically stays at about 30% each IVF cycle, emphasizes 

the challenges that persist even with advancements in IVF technology 6. 

 

 

-------------------- 
2  Datta J, Palmer MJ, Tanton C, Gibson LJ, Jones KG, Macdowall W, et al. Prevalence of 

infertility and help-seeking among 15,000 women and men. Hum Reprod 

2016;31(9):2108e18. 
3  Yigit P, Bener A, Karabulut S. Comparison of machine learning classification techniques 

to predict implantation success in an IVF treatment cycle. Reprod Biomed Online 

2022;45(5):923e34. 
4  Chen W-A, Wu C-L, Ho H-Y, Chang F, Yang J-H, Kung F-T, et al. Social determinants of 

health that impact the time to diagnosis and treatment of infertility in Taiwan. J Formos 

Med Assoc 2024. S0929-6646(24)00238-9. 
5  Pirtea P, Cedars MI, Devine K, Ata B, Franasiak J, Racowsky C, et al. Recurrent 

implantation failure: reality or a statistical mirage: a consensus statement from the July 1, 

2022 Lugano Workshop on recurrent implantation failure. Fertil Steril 2023;120(1):45e59.  
6 McLernon DJ, Steyerberg EW, Te Velde ER, Lee AJ, Bhattacharya S. Predicting the 

chances of live birth after one or more complete cycles of in vitro fertilization: population-

based study of linked cycle data from 113 873 women. BMJ 2016;355: i5735.  

 

 



2025 123(4 )

334

 To improve the success of ART, a detailed examination of each step of the IVF process is 

necessary. IVF is a complicated, multi-phase procedure that requires a range of resources. It 

has challenges since it is time-consuming, labour-intensive, and subject to significant variance 

across observers. The effectiveness and reproducibility of ART are impacted by these 

challenges. 

The medical sector is increasingly utilizing artificial intelligence for several reasons. It 

facilitates accurate clinical decision-making, helps with genetic analysis for individualized 

therapies, and enhances the interpretation of medical imaging. AI also facilitates patient 

monitoring, expedites medication research, and improves surgical techniques with robotic 

support. By leveraging the benefits of automation, AI has the potential to increase ART's 

productivity, reproducibility, and constancy 7. By automating repetitive and time-consuming 

procedures in IVF, including ovarian motivation or workflows in the embryology lab, artificial 

intelligence holds promise for reducing the strain on medical professionals and embryologists. 

AI also continuously improves accuracy through machine learning, which lowers the 

possibility of errors in these procedures while ensuring best practices and outcomes 8. 

Contribution of the paper  

 Implementing non-local means filtering to reduce noise while preserving important 

morphological features in embryo images. 

 Using normalization techniques to improve contrast and consistency, ensuring better 

segmentation and classification accuracy. 

 Development of an optimized U-Net-based segmentation model for identifying and 

defining key reproductive structures such as embryos and eggs in 3D imaging. 

 Improved segmentation performance, enabling accurate regional localization for 

downstream classification. 

 Integration of a region-based convolution neural network for automatic embryo grading 

and reliability assessment. 

 Efficient classification of embryos based on morphological and structural features 

extracted from segmented regions 

 A complete deep-learning pipeline integrating preprocessing, segmentation, and 

classification to improve embryo selection in IVF. 

 Experimental validation demonstrates improved accuracy and reliability compared to 

traditional manual assessment. 

 Reducing subjectivity and variability in manual embryo assessment. 

-------------------- 

7 Abdullah KAL, Atazhanova T, Chavez-Badiola A, Shivhare SB. Automation in ART: 

paving the way for the future of infertility treatment. Reprod Sci 2023;30(4):1006e16.  
8 Letterie G, Mac Donald A. Artificial intelligence in vitro fertilization: a computer 

decision support system for day-to-day management of ovarian stimulation during in 

vitro fertilization. Fertil Steril 2020;114(5):1026e31. 
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Organization of the paper  

This study explores the application of deep learning and 3D vision techniques in embryo and 

follicle assessment for in vitro fertilization (IVF). Section 2 describes various current literatures 

on embryo and follicle assessment, highlighting advances in machine learning, deep learning, 

and 3D imaging techniques in reproductive medicine. Section 3 discusses the proposed 

methodology, describing the preprocessing (NLM filtering and normalization), segmentation 

(U-Net), and classification (R-CNN) techniques used to automate and improve embryo and 

follicle assessment. Section 4 focuses on the performance analysis and experimental results, 

evaluating the model using precision, recall, accuracy, Dice coefficient, MIoU, and ROC-ACC 

score. A comparative analysis with random forest and linear regression models is also 

presented, and the precision and ROC-ACC comparisons are illustrated in Figure 2. Finally, 

Section 5 concludes the study, summarizing the main findings, emphasizing the impact of deep 

learning-based 3D vision on IVF. 

2) Related work  

By automating procedures, improving clinical results, and lowering human error, artificial 

intelligence (AI) is transforming in vitro fertilization (IVF) labs. It provides individualized 

treatment programs and prognostic insights. But it also brings up social, legal, and ethical issues 

like algorithmic prejudice and data security. To guarantee the appropriate application of AI in 

reproductive medicine, the study highlights the need for further investigation and ethical 

supervision 9. To create a deep learning model for determining ploidy position in time-lapse 

recordings, retrospective research was conducted. Eighty percent of the time-lapse movies and 

twenty percent of the known preimplantation genetic testing findings for aneuploidy were old 

to train the model. With an AUC of 0.74, the model showed promise in identifying embryo 

ploidy. Exclusion criteria should be optimized and conducted on a greater scale in future studies 
10. With a focus on sperm separation and analysis. We provide a range of microfluidic sperm 

separation procedures, both natural and non-natural. Additionally discussed is some recent 

advancement in on-chip fertilization 11. 

-------------------- 

9 Yaling Hew, Duygu Kutuk, Tuba Duzcu, Yagmur Ergun and Murat Basar, “Artificial 

Intelligence in IVF Laboratories: Elevating Outcomes Through Precision and Efficiency”, 

Biology, Vo. 13, Issues. 12, 2024. 
10 Chun-I Lee, Yan-Ru Su, Chien-Hong Chen, T Arthur Chang, Esther En-Shu Kuo, Wei-Lin 

Zheng, Wen-Ting Hsieh, Chun-Chia Huang, Maw-Sheng Lee, Mark Liu, “End-to-end deep 

learning for recognition of ploidy status using time-lapse videos”, Journal of Assisted 

Reproduction and Genetics, Vol. 38, Issues. 7, pp.1655–1663, 2021. 
11 Bouloorchi Tabalvandani, M., Saeidpour, Z., Habibi, Z. et al. “Microfluidics as an 

emerging paradigm for assisted reproductive technology”, A sperm separation perspective. 

Biomed Microdevices 26, Vol 23, (2024). 
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 In direct to bridge the gap between the technological and medical elements of microfluidic 

sperm collection, the author proposed a solution. Here, we offer a current list of microfluidic 

sperm selection techniques and how they are used in labs that use assisted reproductive 

technologies. Nevertheless, additional characteristics like chemotaxis and particularly 

rheotaxis may be exploited on microfluidic devices 12. The  KIDScore and iDAScore systems 

predict blastocyst embryo live birth occurrences. Higher KID5 values are more predictive of 

successful outcomes than higher iDA5 levels, according to the results, which indicate a positive 

association 13. 

The difficulty of tracking cell locations within a micro fluidic chip because of the microscope's 

field of view (FOV) limits was proposed. The suggested technique makes use of an area control 

strategy with visual feedback to guarantee that the cell stays in the center of the picture. The 

experimental findings demonstrate the robustness of the loss of eyesight feature, the success 

rate, and the consistent placement of the tiny objects/cells at each step. With its embryologist-

centered design and standardized robotic manipulation, our intelligent manipulation system, 

when combined with innovative manipulation techniques, presents a potential option for in 

vitro fertilization 14. 

Building federated learning ecosystems and cognition-inspired learning pipelines are two 

examples of authentic distributed computing and state-of-the-art machine learning techniques 

that we identify and evaluate for their usefulness. Lastly, talk about current initiatives and 

potential research avenues to address current issues and raise the efficacy of AI/ML 

applications in the healthcare industry 15. Algorithmic bias, Data security, and human-machine 

interaction in healthcare decision-making are just a few of the ethical, legal, and social issues 

that arise when AI is integrated. Enhancing patient results and increasing reproductive 

medicine's accuracy. It emphasizes the need for further investigation and moral supervision to 

provide equitable and open applications in this delicate area, guaranteeing the proper 

application of AI in reproductive medicine 16.  

-------------------- 

12 Ali Reza Jahangiri, Niloofar Ziarati, et al., “Microfluidics: The future of sperm selection 

in assisted reproduction”, WILEY, Vol. 12, Issue. 6,2024. 
13 Papamentzelopoulou, MS., Prifti, IN., Mavrogianni, D. et al., “Assessment of artificial 

intelligence model and manual morphogenetic annotation system as embryo grading 

methods for successful live birth prediction”, a retrospective monocentric study. Reprod 

Biol Endocrinol 22, Vol 27, (2024). 
14 S. Miao, Y. Jia, Z. Jiang, J. Xu and X. Li et al., "Cell Cryopreservation in a Microfluidic 

Chip With Vision-Based Fluid Control and Region Reaching," in IEEE Transactions on 

Automation Science and Engineering, doi: 10.1109/TASE.2024. 
15 E. Zeydan, S. S. Arslan and M. Liyanage et al., "Managing Distributed Machine Learning 

Lifecycle for Healthcare Data in the Cloud," in IEEE Access, vol. 12, pp. 115750-115774, 

2024, doi: 10.1109/ACCESS.2024. 
16 Yaling Hew, Duygu Kutuk, et al., "Artificial Intelligence in IVF Laboratories: Elevating 

Outcomes Through Precision and Efficiency", Biology, Vol  13(12), 2024. 
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Optimizing IVF procedures including drug dosage, timing, and embryological evaluations is 

being greatly aided by recent developments in AI, such as ML and predictive modeling. 

Artificial intelligence-powered diagnostic testing, treatment result prediction modeming, 

schedule optimization, dose and protocol collection, hormone and follicular monitoring, and 

enhanced embryo selection are some of the innovations 17.  It suggests a similar stream fusion 

network that divides embryo microscopic images semantically using a shallow, low-cost 

architecture. With less than 0.7 million trainable parameters, the PSF-Net's shallow design 

combines the advantages of depth-wise concatenation for feature aggregation with element-

wise summing to provide reliable identification. With a mean Jaccard index of 87.69%, the 

suggested approach also shows encouraging segmentation capabilities for all blastocyst 

compartments when compared to the most sophisticated techniques. The PSF-Net design's 

effectiveness is further confirmed by the ablation studies 18. 

BELA predicts quality ratings via multitask learning, which is subsequently employed to 

forecast ploidy status. Using the Weill Cornell dataset, euploidy and aneuploidy embryo 

discrimination achieve an area under the receiver in commission feature curve of 0.76, BELA 

performs comparably to models trained on the manual scores of embryologists. BELA serves 

as an illustration of how these models can speed up the evaluation of embryos, but it cannot 

replace preimplantation genetic testing for aneuploidy 19. To identify the fundamental visual 

characteristics that underlie image-based classification algorithms, the authors introduce 

DISCOVER, a generative model. Disentangled latent representations are learned by 

DISCOVER, where every latent feature encodes a distinct visual attribute that drives 

categorization. By producing jumbled, exaggerated counterfactual explanations, its design 

permits "human-in-the-loop" interpretation 20.  

 

-------------------- 

17 Pavlovic, Zoran J, Jiang, Victoria S, Hariton, Eduardo, et al., "Current applications of 

artificial intelligence in assisted reproductive technologies through the perspective of a 

patient's journey", Vol 36, Issue 4,2024. 
18 Muhammad Arsalan, Adnan Haider, et al., "Deep Learning-Based Detection of Human 

Blastocyst Compartments with Fractal Dimension Estimation”, MDPI, Vol 8, Issue 5,2024. 
19 Suraj Rajendran, Matthew Brendel, et al., "Automatic ploidy prediction and quality 

assessment of human blastocysts using time-lapse imaging", Nature Communications 

volume 15, Article number: 7756 (2024). 
20  Oded Rotem, Tamar Schwartz, Ron Maor, et al., "Visual interpretability of image-based 

classification models by generative latent space disentanglement applied to in vitro 

fertilization", Nature Communications volume 15, Article number: 7390 (2024). 
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Convolution neural networks are used to pinpoint critical pre-implantation human development 

windows that are associated with embryo viability and, as a result, appropriate for the early 

grading of IVF embryos. The findings on how to improve the overall evaluation of embryo 

viability using machine learning models developed at different developmental stages. By 

utilizing the well-known properties of transfer learning, we demonstrate CNN models' 

effectiveness on a small number of datasets, opening the door for clinic-by-clinic 

implementation that takes local data heterogeneity into account 21. compared to algorithms that 

just looked at time-lapse system (TLS) videos, were much higher for algorithms trained on 

multi-centric clinical data. The algorithms were trained and validated using a dataset of 9986 

embryos from 5226 patients recorded using three distinct TLSs from 14 European fertility 

clinics (two countries) (95.60% known clinical pregnancy result, 32.47% frozen transfers). The 

hybrid model's average AUC was considerably higher than the video model's in all seven-folds 

(0.727 vs. 0.684, respectively; P = 0.015; Wilcoxon test) 22. Blockchain technology safeguards 

patient data, while 5G integration ensures reliable and fast connection for real-time data 

transfer. However, developments in networking and cyber security are necessary to handle 

problems like network problems and security threats. The IoT in the IVF lab should not replace 

the experience and knowledge of clinical embryologists for safety and supervision 23. In order 

to improve healthcare, this chapter critiques the AI systems already in use for GYN/OB 

diagnostics and shows how these systems were developed and how they may be employed in 

clinical settings. It also sheds light on the several ways AI is being used in GYN/OB. Many 

machine learning methods have been successfully used to collect unique data related to fetal 

cardiotocography, previous research on maternal-fetal disorders, and other topics 24.  

Two-stage deep supervised 3D convolutional neural networks for the automated detection of 

ovarian follicles in ultrasound images are presented in this article. The CNNs are trained using 

transfer learning and complete follicle detection. The results show that the suggested methods 

estimate follicles up to 2.9% more correctly than the comparative methods and perform around 

7.6% better than automatic detection methods. The training is dependable and sufficiently 

flexible to be applied to a variety of issue areas 25. 

-------------------- 

21 Camilla Mapstone, Helen Hunter, Daniel Brison, et al., "Deep learning pipeline reveals 

key moments in human embryonic development predictive of live birth after in vitro 

fertilization", Biology Methods and Protocols, Volume 9, Issue 1, 2024. 
22 A Duval, D Nogueira, N Dissler, et at., A hybrid artificial intelligence model leverages 

multi-centric clinical data to improve fetal heart rate pregnancy prediction across time-

lapse systems”, Human Reproduction, Volume 38, Issue 4, April 2023. 
23 Giles A. Palmer, Giles Tomkin, et al., “The Internet of Things in assisted reproduction” 

Reproductive Biomedicine Online, Volume 47, Issue 5,2023. 
24 Chander Prabha et al., “Role of artificial intelligence in gynecology and obstetrics”, 

Artificial Intelligence and Machine Learning for Women’s Health Issues,2024. 
25 Bozidar Potocnik and Martin Savc, “Deeply-Supervised 3D Convolutional Neural 

Networks for Automated Ovary and Follicle Detection from Ultrasound Volumes”, 

Applied science, Vol. 12, No. 3, 2022. 
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One technique for treating infertility in human embryos is in vitro fertilization, or IVF. Deep 

learning-based methods, however, are costly and imprecise. Semantic segmentation is used to 

autonomously identify human blastocyst compartments using a parallel stream fusion network. 

The network's shallow design, which combines element-wise summation and feature 

aggregation, enables precise detection with 0.7 million trainable parameters. With a mean 

Jacobian index of 87.69%, the approach exhibits good segmentation performance, and ablation 

experiments validate its efficacy 26. Introduced  EVATOM, an artificial confocal microscopy 

(ACM)-based machine-learning-assisted embryo health monitoring tool. The technology 

grades embryos into healthy/intermediate or sick groups using new quantitative embryo health 

indicators and a label-free nucleus identification approach. The models' weighted F1 scores on 

in-distribution tests are 1.0 and 0.99, while on out-of-distribution tests, they are 0.9 and 0.95 
27. Medical picture segmentation has greatly improved because to deep learning technologies; 

the most often used architecture is the U-shaped Network (UNet). On the other hand, U-Net's 

basic skip connection may result in feature fusion instability and semantic gaps 28 

3) Proposed methodology 

Follicle tracking in IVF based on assisted reproductive technology (ART) and machine learning 

approach involves a comprehensive deep learning pipeline. Pre-processing techniques such as 

non-local means (NLM) filtering and normalization are used to improve image quality by 

reducing noise and enhancing contrast. For segmentation, a U-Net framework is used to 

precisely define follicle structures, which ensures accurate localization. After segmentation, a 

faster region-based convolutional neural network (R-CNN) is used for classification that 

enables automatic follicle estimation. The performance of the proposed method is evaluated 

using precision, recall, accuracy, Dice coefficient, mean intersection over union (MIoU) and 

ROC-ACC score, which ensures robust and reliable results. The overall workflow of a follicle 

tracking system that integrates ART technology with machine learning is illustrated in Figure 

1, which provides a clear representation of the sequential steps in pre-processing, segmentation 

and classification. 

-------------------- 

26 Muhammad Arsalan, Adnan Haider, Jiho Choi, and Kang Ryoung Park, “Detecting 

Blastocyst Components by Artificial Intelligence for Human Embryological Analysis to 

Improve Success Rate of In Vitro Fertilization”, Journal of personalized medicine, pp. 1-

16, 2024. 
27 Neha Goswami, Nicola Winston, Wonho Choi, Nastasia Z. E. Lai, Rachel B. Arcanjo, Xi 

Chen, Nahil Sobh, Romana A. Nowak, Mark A. Anastasio & Gabriel Popescu, “EVATOM: 

an optical, label-free, machine learning assisted embryo health assessment tool”, 

communications biology, Vol. 7, pp. 1-15, 2024. 
28 Xia Zhao, Jiahui Wang, Jing Wang, Jing Wang, Renyun Hong, Tao Shen, Yi Liu, and 

Yuanjiao Liang, “DTLR-CS: Deep tensor low-rank channel cross fusion neural network 

for reproductive cell segmentation”, PLOS ONE, pp. 1-17, 2023. 
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Figure 1. overall flow diagram of follicle monitoring 

Preprocessing  

The gathered images contain both ovaries in a single file and are saved in several file formats. 

To include just one ovary in a single file, image cropping is used. Every picture is an RGB 

image. Normalization is finished once the texture of the picture is restored and speckle noise 

is indifferent using the non-local mean filter. 

 

3D ultrasound 

image dataset 

3D OCT image 

dataset 

Preprocessing: NLM filter and 

Normalization 

Segmentation: U-Net 

Classification: Faster R-CNN 

Performance metrics: Dice, MioU, 

precision, recall, Accuracy and ROC-

ACC 
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NLM filter 

The NLM filter typically replaces the worth of the pixel of attention with the standard heaviness 

of the equally chosen picture areas to produce the de-noised image. Eq. (1) is used to get the 

pixel weight for each pixel pi of the noisy image I.  

𝑤(𝑝𝑖, 𝑝𝑗) =
1

𝑊(𝑝𝑖)
𝑒

−
|𝐼(𝑁𝑝𝑖)−(𝑁𝑝𝑗)|2

2,𝜎

ℎ2                           (1) 

𝑤(𝑝𝑖, 𝑝𝑗) − 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑝𝑖 𝑎𝑛𝑑 𝑝𝑗 

|𝐼(𝑁𝑝𝑖) − (𝑁𝑝𝑗)|2
2, 𝜎 − 𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

The normalized feature W (pi) is considered in below the equation, 

𝑊(𝑝𝑖) = ∑ 𝑒
−

|𝐼(𝑁𝑝𝑖)−(𝑁𝑝𝑗)|2
2,𝜎

ℎ2                                                   (2) 

The denoised importance meant for the pixel pi is known by,  

𝑁𝐿𝑀𝐹(𝐼(𝑝𝑖)) = ∑ (
1

𝑊(𝑝𝑖)
𝑒

−
|𝐼(𝑁𝑝𝑖)−(𝑁𝑝𝑗)|2

2,𝜎

ℎ2 )(𝐼(𝑝𝑗))𝑝𝑗∈𝐼               (3) 

Normalization is completed when the noise has been removed from the picture. The photos are 

reshaped into 256 × 256 since they are in various forms. 

Algorithm  

Algorithm steps: 

1. Enter the picture.  

2. Calculate the value of sigma.  

3. Set the patch size to 5 × 5, the patch space to 3 × 3, and the h constant to 

1.15*estimated_sigma.  

4. With the aid of Equations (1), (2), and (3), calculate the de-noised significance 

NLMF (I(pi)).  

5. Use the image's de-noised pixel significance in place of the original pixel value.  

6. Continue steps 4 and 5 until every pixel is achieved. 

7. accumulate the de-noised photo in a wallet 

 

Normalization  

It is the pre-processing method most frequently employed, transforming the image data into a 

variety of 0 to 1. The normalize methods utilized here are z-score normalization and zero 

means, and it is defined as follows in equation (4): 

𝑋𝑖
′ =

𝑋𝑖−𝑚𝑒𝑎𝑛(𝑋)

𝑆𝐷(𝑥)
                               (4) 
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𝑋𝑖
′ − 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 Where SD (X) denotes the input X's standard deviation 

and mean denotes the mean value. The mathematical expression for standard deviation is Eq. 

(5): 

𝜎 = √
1

𝑁−1
∑ (𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋))2𝑁

𝑖=1             (5) 

The model deviation for the given contribution parameters is given by σ in this case. 

Furthermore, image scaling is carried out. 

Segmentation: U-Net  

Individual of the first and best-known methods for segmenting medical pictures is U-Net, 

which was first put out to solve the cell wall segmentation problem. U-Net is a completely 

symmetrical U-shaped construction that is divisible in half. In the first section, a systolic route 

is represented using a standard CNN architecture. Each block of the systolic route consists of 

two successive 3 × 3 convolutions, a maximum pooling layer, and a ReLU activation unit. U-

Net's extended route is unique in that it up-samples feature maps on each level using 2 x 2 

convolution, after which they are cropped and stitched to the feature maps that were up-

sampled from the relevant layers in the shrinkage route. Following two successive 3 × 3 

convolutions and ReLU activations, a further 1 × 1 convolution is utilized to reduce the feature 

map to the necessary numeral of channel segmented images. Network trimming of the feature 

map is also required to exclude pixel features that have minimal contextual information at their 

borders. More importantly, it allows the network to employ context to distinguish objects from 

larger overlapping regions by spreading contextual information across the network. The 

following formula provides U-Net's energy function: 

𝐸 = ∑ 𝑤(𝑥)𝑙𝑜𝑔(𝑃𝑘(𝑥)(𝑥))                                   (6) 

𝑝𝑘(𝑥) =
𝑒𝑎𝑘(𝑥)

∑ 𝑒𝑎𝑘(𝑥)𝑘
𝑘=1

                                             (7) 

Here, 𝑎𝑘(𝑥) symbolizes the kth channel's activation function, and 𝑝𝑘 stands for the softmax 

purpose that was functional to the network's production feature map. 

U-Net uses the skip relation structure to send the low-level feature map to the advanced feature 

map component and ingeniously provides a one-to-one correlation between the encoder and 

decoder modules. For processing, it combines the low-level and high-level feature maps, and 

these actions enable U-Net to perform exceptionally well in the segmentation of medical 

images. U-Net does, however, have several obvious shortcomings. The relationship between 

the two forms of information cannot be adequately explained by a straightforward fusion 

approach that splices the lower-level in order with the higher-level information. 

Classification: Faster RCNN (region-based convolution neural network) 

The Fast R-CNN network employs SVD to deconstruct its final parallel, fully connected layers, 

which may concurrently produce box regression and classification results. This eliminates the 
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need for extra feature storage space, speeds up detection, lowers computational complexity, 

and enables end-to-end multitasking training. By first substituting Softmax for the SVM 

classifier and then the ROI pooling layer for the final max pooling layer, Fast R-CNN has 

enhanced R-CNN by mapping region suggestions of varying sizes to the same dimension. This 

removes R-CNN's needless feature extraction processes. 

 

The primary cause of the Fast R-CNN's discernible speed advantage over the R-CNN is the 

ROI pooling layer. In SPP nets, the spatial pyramid pooling layer is only a specific case of a 

one-level pyramid. Each ROI's height (h, w) and upper-left corner (r, c) are specified by the 

four-tuple (r, c, h, w). Finding the ROI in the picture and comparing it to the feature map patch 

is one of its primary objectives. The alternative is to use a single-layer SPP layer to downsample 

(max pool) the feature map patch into a fixed-size feature before sending it to the fully-

connected layer FC. 

Following Fast R-CNN, the CPU implementation of the region proposal methods Edge Boxes 

(0.2s/image) and Selective Search (2s/image) presents the biggest obstacle to enhancing object 

detection performance. To create a full end-to-end network, the Faster R-CNN substitutes the 

RPN layer for the Selective Search layer. Building on the concepts of SPPnet and ROI, Region 

Proposal Networks (RPN) project the CNN feature map onto the original ultrasound and OCT 

images, then apply boxes of varying sizes to the image. We refer to the box as an anchor. Based 

on the results of determining the IOU between these anchors and the ground truth, classify the 

anchor into positive and negative categories. The IOU value is categorized as negative if it is 

less than 0.3 and as positive if it is greater than 0.7. Based on the training numerical value, a 

predetermined number of positive and negative samples are selected in order to regress and fix 

the box borders.  

At first, each anchor will provide two scores, uniformly represented by 𝑝, one of which will 

indicate the item's likelihood and the other its chance of not being the object. Four coordinate 

values are then generated to reflect the positive and negative samples that the RPN collected, 

together with the anchor's position coordinates in a predefined number of anchors. 

Consequently, the loss function of the RPN layer is a multi-task loss function consisting of two 

parts: the Softmax loss of the object probability and the smooth L1 Loss of the coordinate 

position between the anchor and the ground truth. The following is a precise definition of the 

loss function: 
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Figure 2. RPN structure  

 

The Loss function is specifically defined as follows: 

𝐿({𝑝𝑖}{𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖

∗) + 𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗
𝑖 𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗)𝑖             (8) 

i is the i-th fasten in a mini-batch in this instance, and 𝑝 i is the predicted probability that anchor 

i will be an article. The ground-truth label 𝑝 i∗ is 1 when the anchor is positive and 0 when it 

is negative. It is positive when the anchor's label is positive, and negative when it is negative. 

The vector 𝑡𝑖
∗represents the four parameterized coordinates of the predicted bounding box, and 

𝑡𝑖
∗ represents the coordinates of a ground-truth box that is connected to a positive anchor. Given 

that (x, y, w, h) represent the width, height, and center coordinates of the box (the same is true 

for y, w, and h), the variables (x, 𝑥 a, 𝑥 ∗) are for the prediction box, anchor box, and ground-

truth box, respectively. Making the two values equal is the learning goal, as seen in Figure 3: 

 

𝑡𝑥 = (𝑥 − 𝑥𝑎)/𝑤𝑎, 𝑡𝑦 = (𝑦 − 𝑦𝑎)/ℎ𝑎    (9) 

𝑡𝑤 = 𝑙𝑜𝑔(𝑤 𝑤𝑎⁄ ) , 𝑡ℎ = 𝑙𝑜𝑔(ℎ ℎ𝑎⁄ )                            (10) 

𝑡𝑥
∗ = (𝑥∗ − 𝑥𝑎)/𝑤𝑎,𝑡𝑦

∗ = (𝑦∗ − 𝑦𝑎)/ℎ𝑎                       (11) 

𝑡𝑤
∗ = 𝑙𝑜𝑔(𝑤∗ 𝑤𝑎⁄ ), 𝑡ℎ

∗ = 𝑙𝑜𝑔(ℎ∗ ℎ𝑎⁄ )                         (12) 

In method (2), softmax Loss contains two categories and is given below,  

𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖
∗) = −𝑙𝑜𝑔(𝑝𝑖

∗𝑝𝑖 + (1 − 𝑝𝑖
∗)(1 − 𝑝𝑖))                 (13) 

𝐿𝑟𝑒𝑔 is the smooth loss for two offsets and the given is below, 

𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗) = 𝑅(𝑡𝑖 − 𝑡𝑖

∗)                                                      (14) 

R is the function which is given below, 

𝑅(𝑥) = 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5𝑥2 |𝑥| ≤ 1

|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (15) 
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𝜆 Is the hyperparameter that controls the equilibrium connecting the categorization loss and 

degeneration loss. 𝑁𝑐𝑙𝑠  And 𝑁𝑟𝑒𝑔 are used to regularize the categorization loss 𝐿𝑐𝑙𝑠 and the 

degeneration loss 𝐿𝑟𝑒𝑔 correspondingly. 

Almost half of the network's time is spent operating at the complete connection layer. 

Consequently, the FC computation is accelerated by using the reduced SVD.  

 

Figure 3. Faster RCNN 

4) Result and discussion  

Follicle tracking in IVF, based on assisted reproductive technology (ART) and machine 

learning approach, involves a comprehensive deep learning pipeline. Pre-processing 

techniques such as non-local means (NLM) filtering and normalization are used to improve 

image quality by reducing noise and enhancing contrast. For segmentation, a U-Net framework 

is used to precisely define follicle structures and ensure accurate localization. After 

segmentation, a Faster region-based convolutional neural network (R-CNN) is used for 

classification that enables automatic follicle estimation. Performance analysis includes pre-

processing, segmentation, and classification, with comparative analysis with existing follicle 

tracking techniques to highlight improvements. The proposed model is evaluated using 

precision, recall, accuracy, Dice coefficient, Mean Intersection over Union (MIoU), and ROC-

ACC score. To ensure robust and reliable performance, the entire algorithm is implemented 

using the Python programming language, version 3.11, utilizing advanced deep learning 

libraries for optimal performance. 

Performance metrics 

Dice 

The assessment criteria for the segmentation procedure are the dice similarity coefficient 

(DSC). Dice is a measure of aggregated similarity. With values ranging from 0 to 1, the measure 

is typically used to determine how similar two samples are to one another. The top segmentation 

effect is 1, and the most unpleasant is 0. The following is the method for manipulative dice: 

𝑑𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
    (16) 
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MioU 

One common measure for semantic segmentation is Mean Intersection over Union (MIoU). To 

get the average value, MIoU is utilized to compute the ratio of the connection and concatenation 

of the network's real and forecasted outcomes. The following is the calculating formula: 

𝑀𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
    (17) 

Precision  

In the fields of statistical classification and information retrieval, precision is a commonly used 

measure. The measure, which is used to evaluate the quality of the findings, shows the ratio of 

samples that are anticipated to be accurate to folks that are projected to be accurate: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (18) 

Recall  

The ratio of accurately predicted samples to the number of activist samples in the sample is 

known as recall. The quality of the outcomes is also assessed using the measure. The following 

is the calculation. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (19) 

 

Where FP is the numeral of predicted pixel sites that receive an inaccurate target category 

classification, FN is the numeral of predicted pixel points that receive an incorrect non-target 

category classification, and TP is the number of pixels that are expected to receive a correct 

target class classification. 

 

 

Figure 4. Test segmentation results  
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The results of cell segmentation utilizing the approach suggested in this study are shown in 

Figure 4, which shows that the method can precisely distinguish the cells from the 

background, leading to improved cell segmentation test results. 

 

 

Figure 5. Precision metric results 

As shown in Figure 5, as the number of training rounds increased, the accuracy continued to 

increase and then flattened out, indicating that the model had reached convergence and further 

training did not yield significant improvements. 

 

Figure 6. Losses values for 50 epochs 
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The loss rate also kept down at the same period, and the curve briefly fluctuated before leveling 

out. Because of this, our approach has performed well in picture classification utilizing faster 

R-CNN, as seen in figure 6. 

 

Figure 7. Dice and MIoU metrics of RCNN based on ART 

 

  

Figure 8. Precision and recall metrics of RCNN based on ART 

Figures 7 and 8 present the Dice, MIoU, Precision, and Recall parameters of our method. After 

50 rounds of the epoch, the Dice metric is 98.66%, the MIoU metric is 97.32%, the Precision 

metric is 98.47%, and the Recall metric is 98.69%. This demonstrates that the cell picture 

segmentation results produced by our model are rather accurate. We evaluated our method's 

overall performance by contrasting it with alternative methods. 

 

Table 1. Comparison of performance with other models as CNN, LR 
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Method  Dice (%) MioU (%) 

CNN 91.35 91.18 

LR 93.05 90.31 

R-CNN 98.66 97.32 

 

 

Figure 9. Dice and MIoU metrics analysis 

We contrasted our approach with other algorithms to examine its overall performance. We 

contrasted our approach with LR and CNN. The findings of comparing the Dice and MIoU 

metrics across the various methods were displayed in Table 1. Our approach outperformed the 

others in terms of Dice and MIoU assessment measures, as shown in Table 1 and figure 9. The 

approach suggested in this research has a Dice of 98.66% and a MIoU of 97.32%. The 

performance increase of our suggested strategy is 6.14% in MIoU and 7.31% in Dice when 

compared to the CNN method. Our technique's Dice and MIoU both improved by 5.61% and 

7.01%, respectively, in comparison to the LR method. Consequently, the fasterRCNN approach 

suggested in this research performs better in terms of segmentation and classification 
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Figure 10. Accuracy and ROC-ACC curve 

The proposed model is evaluated using, accuracy, and ROC-ACC score to ensure robust and 

reliable performance. Furthermore, the accuracy and ROC-ACC scores of follicle monitoring 

in IVF using R-CNN are compared with random forest and linear regression models, 

demonstrating the improved performance of the deep learning approach. This comparative 

analysis is presented in Figure 10, which illustrates the performance differences between the 

models. 

5) Conclusion  

The proposed a deep learning-based 3D vision framework for embryo assessment and follicle 

tracking, which integrates preprocessing, segmentation, and classification techniques in in vitro 

fertilization (IVF). Non-local means (NLM) filtering and normalization were used to improve 

image quality, while U-Net was used for accurate segmentation of reproductive structures. A 

region-based convolutional neural network (R-CNN) effectively classified embryos and 

follicles, ensuring automatic, objective, and accurate assessment. Performance analysis 

demonstrated that the proposed method outperformed traditional machine learning models, 

such as random forest and linear regression, with high accuracy and ROC-ACC scores, as 

shown in Figure 2. Evaluation metrics, including precision, recall, Dice coefficient, and MIoU, 

confirmed the robustness of this approach. By automating the grading process, this method 

reduces subjectivity, improves decision-making in assisted reproductive technology (ART), 

and improves IVF success rates. 
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