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Abstract: 

 Freezing of Gait (FoG) is a debilitating symptom of Parkinson’s Disease (PD) 

that severely impacts mobility and quality of life. Early prediction of FoG can facilitate 

timely interventions, improving patient outcomes. This study proposes a multimodal 

sensor fusion approach combined with deep learning and Internet of Things (IoT) 

technology for real-time FoG prediction. The system integrates data from inertial 

measurement units (IMU), electromyography (EMG), electroencephalography (EEG), 

and foot pressure sensors. Pre-processing includes Noise removing window design 

method using a sliding window approach. Feature extraction in time, frequency, and 

nonlinear domains is followed by feature selection using Linear Discriminant Analysis 

(LDA) and Mutual Information (MI) a hybrid CNN-LSTM deep learning model is 

employed to capture spatial and temporal patterns in gait data.This approach paves the 

way for intelligent, real-time wearable monitoring systems, enhancing mobility, safety, 

and quality of life for PD patients. 

Keywords: Freezing of Gait, Parkinson’s Disease, Multimodal Sensor Fusion, , 

Electromyography, Electroencephalography, Foot Pressure Sensors, Linear 

Discriminant Analysis. 

1) Introduction 

The episodic lower extremity movement condition known as FOG poses a significant 

risk of impairment and is particularly prone to falls. FOG monitoring can help in FOG 

diagnosis and therapy. The frequency and length of freezing episodes can be decreased 

by monitoring and providing suitable gait direction.This work aims to employ 

multimodal fusion. techniques to increase the monitoring model's resilience.1  The 

force-sensitive insole (FSI) and inertial measurement unit (IMU) concurrently gather 
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the 32 FOG sufferers' gait data. In order to create a multimodal fused FOG monitoring 

model, complementary features were extracted from IMU and FSI inputs, respectively, 

using deep neural networks.  

-------------------- 
1 Li, Bochen, Yan Li, Yining Sun, Xianjun Yang, Xu Zhou, and Zhiming Yao, 

“A monitoring method of freezing of gait based on multimodal fusion”, 

Biomedical Signal Processing and Control, Vol.82 ,2023. 

 It is essential to have a precise and timely FoG forecast in order to create such an 

assessment setting. Additionally, anticipating the FoG advance in time for prompt 

patient cueing is crucial for the practical deployment of these cueing modalities 2. 

Approaches for data reduction and feature extraction that have been presented recently 

for a variety of uses. ML and DL algorithms are the foundation of many of these 

applications. Numerous research has been conducted that provide insight into how 

incoming signals are discriminated in gait motions. The discovery of FoGs using ML 

approaches has presented significant problems for academics. In this procedure, 

features are extracted using both conventional and novel techniques using handmade 

and deep structures. Techniques for feature extraction and data reduction are employed 

to improve the efficiency of general data analysis procedures by either reducing 

computing complexity or increasing feature description. Since there are several 

approaches to signal or data analysis, we look at bottleneck attention inside the recently 

created and extremely promising DL framework 3. Though they frequently encounter 

difficulties because they require handmade and structural information, classical ML 

algorithms have demonstrated promising results in identifying Parkinson's disease 

(PD) in comparison to time-consuming and costly approaches like neurological 

scanning (e.g., MRI,). On the other hand, the capacity of DL and CNN approaches to 

automatically extract noteworthy visual characteristics from datasets in many fields has 

attracted interest. DL architectures are a focus of medical and image processing 

research since they used a range of data sources, including facial traits, handwriting 

samples, audio signals, and gait patterns, to identify Parkinson's disease (PD) early in 

recent years 4. Physicians merely use accessible measures to grade Parkinson's disease 

(PD) and recommend drugs to reduce its symptoms. The subjective assessment used 

throughout the whole study may be flawed if it is not carried out by professionals. 

Therefore, the creation of an automated gait parameter analysis system is required to 

precisely identify both healthy and PD people and treat them skilfully 5. 

• To Integrate multiple sensor data sources (e.g., IMUs, EEG, EMG, force 

sensors) to enhance predictive accuracy. 
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2 Bajpai, Rishabh, Suyash Khare, and Deepak Joshi, “A multimodal model-

fusion approach for improved prediction of freezing of gait in parkinson’s 

disease”, IEEE Sensors Journal, Vol.23, no. 14 ,2023. 
3 Abbasi, Sara, and Khosro Rezaee, “Deep Learning–Based Prediction of 

Freezing of Gait in Parkinson's Disease with the Ensemble Channel Selection 

Approach”, Brain and Behavior,Vol, 15, no. 1, 2025. 
4 Benredjem, Sabrina, Tahar Mekhaznia, Rawad Abdulghafor, Sherzod Turaev, 

Akram Bennour, Bourmatte Sofiane, Abdulaziz Aborujilah, and Mohamed Al 

Sarem. "Parkinson’s Disease Prediction: An Attention-Based Multimodal 

Fusion Framework Using Handwriting and Clinical Data”, Diagnostics, 

Vol. 15, no. 1 (2024): 4. 
5 Kour, Navleen, Sunanda Gupta, and Sakshi Arora. "Sensor technology with gait 

as a diagnostic tool for assessment of Parkinson’s disease: a 

survey." Multimedia Tools and Applications, Vol. 82, no. 7, 2023. 

• To Utilize advanced deep learning architectures (e.g., CNNs, LSTMs, 

Transformers) to capture spatial and temporal patterns in movement data. 

• To Apply preprocessing techniques like filtering, Noise removing window 

design, and feature extraction to enhance signal quality. 

• To Develop Internet of Things based system for real-time FoG monitoring and 

prediction. 

This remainder of the paper is organized into important sections that are explained as 

follows: Section II lists the current research works in DL Model for Early Prediction 

of Freezing of Gait in Parkinson’s Disease that have been completed by different 

authors. Section III outlines the workflow of the proposed method. The comparison 

results of proposed model with traditional model for DL Model for Early Prediction of 

Freezing of Gait in Parkinson’s Disease shown in Section IV. In Section V, together 

with references, is the conclusion of the suggested work that will be undertaken in a 

future scope. 

2) Related work  

Gupta et al., (2024) 6 The proposed study developed and assessed deep learning 

models using Inertial Measurement Unit, Electromyography, and 

Electroencephalography inputs from individuals with Parkinson's disease. Other 

classifiers were examined with the CNN+LSTM architecture. With stratified ten-fold 

cross-validation, the model's accuracy was assessed. We examined inter-subject 

performance and the noise-resistant nature of IMU+EMG and IMU+EMG+EEG 

combinations. In order to highlight the significance of temporal dynamics in the 
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multimodal method, pre-FOG detection skills were also examined. Findings: The 

CNN+LSTM model predicted FoG events with a high accuracy of 94.45%. 

Rishabh Bajpai et al., (2023) 7 This study offers a thorough examination of inertial 

measuring units and EEG to forecast FoG advance over time. Two neural networks, 

EEGFoGNet and IMUFoGNet, were combined to create an ensemble model that was 

evaluated at various ensemble weights and PHs. Additionally, the model is evaluated 

for two real-world situations: personal applications and clinical or research settings. 

With stratified ten-fold cross-validation, the model's accuracy was assessed. We 

examined inter-subject performance and the noise-resistant nature of IMU+EMG and 

IMU+EMG+EEG combinations, a transfer learning approach was employed. At 1 

second's PH, the model's accuracy was at its highest of 92.1%, while at 5 seconds' PH, 

it was at its lowest of 86.2%. 

-------------------- 
6 Gupta, Rohit, Amit Bhongade, and Tapan Kumar Gandhi, “Multimodal Sensor 

Fusion Deep Learning Model for Early Prediction of Freezing of Gait in 

Parkinson's Disease”, 2024. 
7 Bajpai, Rishabh, Suyash Khare, and Deepak Joshi, “A multimodal model-

fusion approach for improved prediction of freezing of gait in parkinson’s 

disease”, IEEE Sensors Journal, Vol. 23, no. 14, 2023. 

 

 

Guo et al., (2022) 8 This study suggests a wearable FoG detection technique that avoids 

the collection of actual EEG data by combining EEG and acceleration data in many 

modes. Methodologies: An very wearable inertial sensor for detecting fog may be used 

to extract pseudo-multimodal characteristics, such as pseudo-EEG and acceleration, 

and a EEG characteristic from accelerations were measured using Long-short-term 

memory networks serve as the foundation for this proxy assessment methodology. 

Results: A self-collected FoG dataset was used to analyze the performance of several 

feature combinations in both subject-dependent and cross-subject scenarios. 

Wang et al., (2024) 9 Four crucial tactics are included in the model architecture: (1) 

Using large convolutional kernels to detect progressive motion changes; (2) Using 

multi-dimensional and multi-scale convolution to unravel the intricacy of motion 

coordination and gait dynamics; (3) Using twin-tower structure to capture gait self-

similarity and asymmetry; and (4) Encouraging cross-domain information exchange 

with multi-domain attention. In addition, we provide a knowledge distillation (KD)-

based architecture that makes predictions more accurate while lowering the model's 
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reliance on numerous sensors. Findings: The model's Area Under the Curve for FOG 

prediction is 85.8%. 

Kun Hu  et al., (2021) 10 This paper offers a Graph fusion NN for multimodal learning-

based FoG identification, a new end-to-end deep architectureby the integration of 

footstep pressure maps and video recording. In order to reduce representation 

redundancy among various modalities, GFN builds in multimodal graphs, 

complementary FoG representations are produced by measuring the adjacency patterns 

of the encoded properties of each modality, which are treated as vertex-level inputs. 

Moreover, in contrast to the previous unimodal strategies, GFN is anticipated to 

perform better with inputs that have missing modalities since it is designed to handle 

multimodal graphs of arbitrary shapes. 

-------------------- 
8  Guo, Yuzhu, Debin Huang, Wei Zhang, Lipeng Wang, Yang Li, Gabriella 

Olmo, Qiao Wang, Fangang Meng, and Piu Chan, “High-accuracy wearable 

detection of freezing of gait in Parkinson's disease based on pseudo-multimodal 

features”, Computers in Biology and Medicine, Vol.146 ,2022. 
9  Wang, Wenan, Jingfeng Lin, Xinning Le, Yaru Li, Tao Liu, Lunxin Pan, Min 

Li, Dezhong Yao, and Peng Ren. "Addressing Multiple Challenges in Early 

Gait Freezing Prediction for Parkinson's Disease: A Practical Deep Learning 

Approach." IEEE Journal of Biomedical and Health Informatics, 2024. 
10  Hu, Kun, Zhiyong Wang, Kaylena A. Ehgoetz Martens, Markus 

Hagenbuchner, Mohammed Bennamoun, Ah Chung Tsoi, and Simon JG 

Lewis, “Graph fusion network-based multimodal learning for freezing of gait 

detection”, IEEE Transactions on Neural Networks and Learning 

System,Vol. 34, no. 3, 2021. 

 

 

Sun et al., (2024) 11 In order to Enhance learning of the discriminative class-specific 

gait characteristics by incorporating the hand-picked features into a DNN known as 

ResNeXt. We conduct our experiments utilizing the publicly available Daphnet dataset, 

which consists of gait recordings from 10 PD patients and eight subjects displaying 

FoG epochs. Adjusting the segment length to 5 s and the pre-FoG duration to 1 s, 

respectively, produced the best results. We tested a range of pre-FoG durations and 

segment lengths. With an MF1 score of 0.89 and a Kappa coefficient of 0.87, the 

highest prediction accuracy is 95.40%.  

Elbatanouny et al., (2024) 12 A thorough This article presents a meta-analysis of FOG 

prediction and detection methods, focusing on the integration of wearable sensor 
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technologies and Ml techniques. The use of cueing devices is also examined in the 

investigation. One notable gap in FOG prediction research is the minimal use of 

explainable AI (XAI) techniques. Understanding the reasoning behind algorithm 

predictions is necessary to increase user acceptance and comprehension. The 

presentation identifies some limitations of current research on FOG detection and 

prediction. 

Bochen Li et al., (2023) 13 Using multimodal fusion approaches this study is intended 

to increase the monitoring model's robustness. The FSI and IMU gather the gait data 

of 32 FOG patients at the same time. The two modalities were combined at the feature 

level to produce a multimodal fused FOG monitoring model using an adaptive 

weighting technique. Complementary characteristics from the FSI and IMU inputs 

were extracted, respectively, using deep neural networks. Experimental results show 

that in the FOG detection task, the proposed multimodal fusion strategy outperforms 

the unimodal model by improving the F1 value by 0.029. 

Ghayvat et al., (2024) 14 In order to This proposed technique uses a The Kaiser-Meyer-

Olkin test, Kalman Filter, and Weighted Fuzzy Logic Controller are used to measure 

gait characteristics throughout the standing, walking, and resting phases. 

-------------------- 
11 Sun, Hua, Qiang Ye, and Yi Xia, “Predicting freezing of gait in patients with 

Parkinson's disease by combination of Manually-Selected and deep learning 

features”, Biomedical Signal Processing and Control,Vol. 88, 2024. 
12 Elbatanouny, Hagar, Natasa Kleanthous, Hayssam Dahrouj, Sundus Alusi, 

Eqab Almajali, Soliman Mahmoud, and Abir Hussain, “Insights into 

Parkinson’s Disease-Related Freezing of Gait Detection and Prediction 

Approaches: A Meta-Analysis”, Sensors,Vol. 24, no. 12, 2024. 
13 Li, Bochen, Yan Li, Yining Sun, Xianjun Yang, Xu Zhou, and Zhiming Yao, 

“A monitoring method of freezing of gait based on multimodal 

fusion”, Biomedical Signal Processing and Control, Vol. 82 ,2023. 
14 Ghayvat, Hemant, Muhammad Awais, Rebakah Geddam, Muhammad Ahmed 

Khan, Lewis Nkenyereye, Giancarlo Fortino, and Kapal Dev, “AiCarePWP: 

Deep learning-based novel research for Freezing of Gait forecasting in 

Parkinson”, Computer Methods and Programs in Biomedicine, Vol.254, 2024. 

Neuromodulator format, intensity, frequency, duration, and velocity are among the 

variables that are calculated in advance to prevent freezing episodes. CNN's ability to 

identify FoG during a variety of activities is validated by this investigation. It presents 

a brand-new electrical stimulation cueing technique that enhances gait function and 

lowers the incidence of FoG in PD patients. 
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Wang et al., (2024) 15 Suggest a new Using to alert patients before the start of FOG 

symptoms, multi-channel gait characteristics may be included into a comprehensive 

prediction framework using a multi-channel time-series neural network technique. The 

causal distributed convolution in MCT-Net makes it a real-time approach that might 

deliver the best prediction sooner and be utilized in remote devices. A single deep 

learning model is also created by combining and extracting several sensor location data 

using MCT-Net's intra-channel and inter-channel transformers. With a 96.21% 

accuracy rate and an F1-score, the proposed MCT-Net beats four state-of-the-art FOG 

prediction baselines. of 80.46% on average two seconds before to FOG on set. 

Riyadh M. Al-Tam et al., (2024) 16 This study uses well-known machine-learning 

methods to increase the precision of the diagnosis. Numerous individual and ensemble 

artificial intelligence models, such as RF, DT, LR, GB, SVM, Stacking, and Bagging 

Ensemble classifiers, have been presented. On two common benchmark datasets, three 

scenarios are used. The greatest results are obtained when the Stacking Ensemble 

classifier is used, where Parkinson's disease is classified using logistic regression, and 

features are extracted using support vector machines and gradient boosting. Stacking 

Ensemble classifier results for the first dataset show 94.87% accuracy and 90.00% 

AUC, while the results for the second dataset show 96.18% accuracy and 96.27% AUC. 

Yuhan Hou  et al., (2023)  17 In order to assist avoid falls, our effort creates wearable, 

flexible sensors that can identify FoG and notify partners and patients. With the use of 

a DL model and multimodal sensory data collected from scattered wireless sensors, 

FoG is identified on the sensors. We have developed There are two types of wireless 

sensors in use:  

 

-------------------- 
15 Wang, Boyan, Xuegang Hu, Rongjun Ge, Chenchu Xu, Jinglin Zhang, Zhifan 

Gao, Shu Zhao, and Kemal Polat, “Prediction of Freezing of Gait in Parkinson’s 

disease based on multi-channel time-series neural network”, Artificial 

Intelligence in Medicine, Vol. 154 ,2024. 
16 R. M. Al-Tam, F. A. Hashim, S. Maqsood, L. Abualigah and R. M. Alwhaibi, 

"Enhancing Parkinson’s Disease Diagnosis Through Stacking Ensemble-Based 

Machine Learning Approach," in IEEE Access, vol. 12, pp. 79549-79567, 2024 
17 Hou, Yuhan, Jack Ji, Yi Zhu, Thomas Dell, and Xilin Liu. "Flexible gel-free 

multi-modal wireless sensors with edge deep learning for detecting and alerting 

freezing of gait symptom." IEEE Transactions on Biomedical Circuits and 

Systems,Vol. 17, no. 5 (2023): 1010-1021. 
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1) An elastic patch is fastened to the patient's legs to gather movement data from 

accelerometers and EMG; 2) a C-shaped central node is positioned around the patient's 

ears to gather an EEG, identify FoG using an on-device DL model, and provide 

auditory alarms when FoG is found. Using low-power ultra-wideband transceivers, the 

patch-type sensors wirelessly transmit the collected data to the central node. 

Pratihar et al., (2024) 18 This study offers a thorough analysis of current biomarker 

research, improvements in healthcare infrastructure, and technology developments for 

objective evaluation. Using machine learning algorithms, it provides a thorough 

evaluation of many biomarkers' use in diagnosing Parkinson's disease across numerous 

datasets. Tables summarizing recent research outcmes highlight important 

methodology such feature selection, data preparation, and classification algorithms. 

The performance, advantages, and drawbacks of several diagnostic techniques are also 

examined in this study, offering important new information on how well they diagnose 

Parkinson's disease. Additionally, the paper discusses disease monitoring, integrating 

data from several sources to improve diagnosis accuracy, and multimodal biomarker 

integration. 

Franco et al., (2024) 19 Using Systematic Reviews and Meta-Analyses with the 

Preferred Reporting Items criteria, the authors of this study present a systematic 

evaluation of new DL approaches that have been recently presented for the analysis of 

PD. A six-year period (from 2018, when the first paper was published, until 2023) was 

used to search the databases Web of Science, PubMed, and Scopus. This research 

comprises 25 publications that examine the movement analysis of individuals with 

Parkinson's disease (PD) utilizing sensors that are both capable of being worn and not. 

Additionally, several studies employed DL networks for surveillance, diagnosis, and 

categorization.  

Kour et al., (2023) 20 This article provides a concise synopsis of Parkinson's disease 

(PD), outlining its effects on human gait, and discussing related ideas. We also go into 

great detail about SB technology and how different sensors work in PD gait 

identification. In conclusion, we look at the machine learning paradigms and how well 

they do in PD analysis. Analysis of prior and ongoing research on sensor-based 

diagnosis of PD motor symptoms is the aim of this study. 

-------------------- 
18 Pratihar, Ruchira, and Ravi Sankar. "Advancements in Parkinson’s Disease 

Diagnosis: A Comprehensive Survey on Biomarker Integration and Machine 

Learning." Computers 13, no. 11 (2024): 293. 
19  Franco, Alessandra, Michela Russo, Marianna Amboni, Alfonso Maria 

Ponsiglione, Federico Di Filippo, Maria Romano, Francesco Amato, and Carlo 
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Ricciardi. "The Role of Deep Learning and Gait Analysis in Parkinson’s 

Disease: A Systematic Review." Sensors 24, no. 18,2024. 
20 Kour, Navleen, Sunanda Gupta, and Sakshi Arora. "Sensor technology with gait 

as a diagnostic tool for assessment of Parkinson’s disease: a 

survey." Multimedia Tools and Applications 82, no. 7 (2023): 10211-10247. 

 

 

Ref.No Dataset used Algorithm used Result achieved 

21 UCI dataset Convolutional neural 

networks (CNNs) algorithm, 

Machine learning 

Achieving 99.88% accuracy 

22 FoG dataset ML Algorithm  The DL model attains a high 

specificity of 0.88 and a detection 

sensitivity of 0.81. 

 

23 University of 

California Irvine 

(UCI) 

ML Algorithm Achieved an accuracy of 96.46% 

24 PD data set Machine learning (ML) 

algorithms 

0.70 ± 0.28 accuracy and 0.74 ± 

0.39 area under the ROC curve 

 

25 Daphnet Dataset, 

Multimodal Dataset 

 ML and DL algorithms Achieving F1 scores of 0.994 using 

29.9 times fewer parameters 

-------------------- 
21 Abbasi, Sara, and Khosro Rezaee, “Deep Learning–Based Prediction of 

Freezing of Gait in Parkinson's Disease with the Ensemble Channel Selection 

Approach”, Brain and Behavior, Vol.15, no. 1 ,2025. 
22 Hou, Yuhan, Jack Ji, Yi Zhu, Thomas Dell, and Xilin Liu, “Multi-Modal 

Wireless Flexible Gel-Free Sensors with Edge Deep Learning for Detecting and 

Alerting Freezing of Gait in Parkinson's Patient”, arXiv preprint,2023. 
23 K. Velu and N. Jaisankar, “Design of an Early Prediction Model for Parkinson’s 

Disease Using Machine Learning”, IEEE Access, vol. 13, 2025. 
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24 Magni, Stefano, Rene Peter Bremm, Konstantinos Verros, Xin He, Sylvie 

Lecossois, Finn Jelke, Andreas Husch, Jorge Goncalves, and Frank Hertel. 

"Machine learning differentiation of Parkinson's disease and normal pressure 

hydrocephalus using wearable sensors capturing gait 

impairments." medRxiv (2025): 2025-01. 
25 Yi, Myung-Kyu, and Seong Oun Hwang. "Detection of Freezing of Gait in 

Parkinson's Disease Using a Lightweight Attention-Based Deep Learning 

Model with Pruning and Dynamic Quantization Techniques on Wearable 

Devices”,2024. 

 

3) Proposed Methodology  

The proposed methodology integrates multimodal sensor fusion, deep learning, and 

IoT-based real-time monitoring to predict FoG in PD patients shown in figure 1. This 

first step involves data acquisition, where wearable sensors continuously collect gait 

data from Inertial Measurement Units (IMU), Electromyography (EMG), 

Electroencephalography (EEG), and Foot Pressure Sensors. IMU captures motion 

dynamics, EMG monitors muscle activity, EEG records brain signals, and foot pressure 

sensors analyse walking stability. The collected data is labeled to differentiate normal 

gait from FoG episodes. To ensure high-quality input, data preprocessing is performed, 

including noise filtering using Butterworth filtering to remove artifacts, normalization 

to standardize sensor readings, and segmentation using a sliding window approach to 

divide data into fixed-length sequences. Next, feature extraction and selection are 

applied, where time, frequency, and nonlinear features, such as statistical measures, 

wavelet transforms, and entropy-based metrics, are computed. LDA and MI are used 

to enhance model efficiency and decrease dimensionality. The hybrid CNN-LSTM 

deep learning model is used for categorization. From sensor data, the CNN extracts 

spatial information, while the LSTM records temporal relationships. in gait patterns. 

To enable real-time monitoring, wearable sensors transmit data to a cloud or edge-

computing platform, allowing continuous analysis and remote healthcare provider 

access. Finally, the accuracy of the model is used to assess its performance., F1-score, 

and AUC-ROC, demonstrating superior results compared to traditional machine 

learning models. 
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   Figure 1 Proposed Flow Diagram 
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3.1) Dataset  

Predicting FoG episodes in PD patients is the primary goal of this study. Thus, it was 

essential to choose a dataset with a sufficient number of FoG episodes. The dataset 

includes skin conductance, EEG, EMG, and IMU recordings from 12 people with 

Parkinson's disease (6 men and 6 women). STMicroelectronics STM32 CPU, gyro, and 

TDK MPU6050 6-DoF accelerometer were utilized as specific hardware subsystems 

to record SC and IMU data. Four Inertial sensors were positioned at the lateral tibia of 

both legs, the fifth lumbar spine (L5) at the waist, and the left arm. This left arm's 

inertial sensor was modified to include the SC acquisition. A TF memory card was used 

to store the data, and the SC and ACC sampling rates were set at 500 Hz.  

The distal phalanges of the middle and left index fingers were used to take the SC 

measurement. Information from three main signals IMU, EMG, and EEG is integrated 

during the procedure. Specifically, EMG signals from three muscles, EEG signals from 

21 channels, and signals from two IMU sensors (left and right legs) were used. Every 

signal modality has unique sampling frequencies and properties. As a result, each 

signal is pre-processed independently. A sequence of operations carried out in a 

particular order comprised the dataset collection experiment. These exercises included 

starting and finishing a gait, walking in an arena while doing quarter turns and U-turns, 

for additional analysis, the current study uses EEG, EMG, and IMU sensor data from 

ten patients who have had a sufficient number of FoG episodes. 

 

3.2) Data Pre-processing 

EEG is a crucial instrument for assessing brain activity and behavior. The processing 

of the EEG, EMG, and IMU data is constantly impacted by artifacts in the electrical 

activity that was recorded. Thus, it is necessary to develop methods for precisely 

identifying and obtaining clean EEG data from EEG recordings. the FIR filter to make 

EEG easier, less noisy, less expensive, and less power-hungry. It prevents blending in 

other biological signals and occupies less space on the chip than earlier digital filters. 

One essential step in digital signal processing is filtering. High FIR filtering passband 

ripples may be the cause of low stop band attenuation. Therefore, windowing 

techniques are used at the filtering stage to overcome the issue. The impulse response 

of the actual filter may be expressed as: 

ℎ(𝑛) = ℎ𝑑(𝑛) ∗ 𝑤(n)                                                               (1) 

Were  

• The optimal filter's impulse response is hd (n). 

• A particular window function w(n). 
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The filters are referred to as transition bandwidth, cut off frequency, and stopband 

attenuation. Therefore, it is preferable to employ to minimize the distortion of the 

attenuation signal, a filter with a cutoff frequency outside the transition bandwidth and 

the distortion generated by attenuation. The original single's maximum frequency is 

more than twice the sampling rate. There are several ways to filter using the windowing 

technique is capable of extracting the EEG, ECG, and IMU input's Signals with alpha, 

beta, gamma, theta, and delta frequencies. Several windowing strategies include the 

following. 

 

The rectangular window is the most fundamental kind, also known as the Dirichlet or 

Boxer window. Equation provides the function for the rectangular window (2). 

 

𝑊𝑅𝑒𝑐 (𝑛) = {
1, 𝑓𝑜𝑟 |𝑛| ≤

𝑀−1

2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                                             (2) 

 

Where M is the window's length in samples: 

 

Another kind of cosine window is the hamming window, sometimes called an 

improved raised cosine window. Equation (3) may be used to find the Hamming 

function. 

 

 

𝑊𝐻𝑎𝑛𝑛(𝑛) = {
0.55 − 0.46𝑐𝑜𝑠 (

2𝜋𝑛

𝑀−1
) , 𝑓𝑜𝑟 0 ≤ |𝑛| ≤ 𝑀 − 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                   (3) 

 

Following the Hamming window is the hanging window. Another name for it is the 

Cosine BellTo to avoid confusion with the extremely similar Hamming window, some 

authors prefer to call it a henning window. In equation (4), the hanning function is 

expressed. 

 

𝑊𝐻𝑎𝑛𝑛(𝑛) = {
0.55 − 0.5𝑐𝑜𝑠 (

2𝜋𝑛

𝑀−1
) , 𝑓𝑜𝑟 0 ≤ |𝑛| ≤ 𝑀 − 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                     (4) 

With the exception of the endpoints, which are at zero, the Bartlett function may be 

expressed using Eq. (5). 
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𝑊𝐵𝑎𝑟(𝑛) = {
1 + 𝑛 𝑓𝑜𝑟 −

𝑀−1

2
< 𝑛 < 1

1 − 𝑛 𝑓𝑜𝑟 < 𝑛 < 1
𝑀−1

2

}                                                  (5) 

 

 

The Kaiser window, often referred to called the Kaiser-Bessel window was developed 

by Bell Laboratories' James Kaiser. It is a parameter from the window function family 

that is used to create finite impulse response filters and perform spectral 

analysis.Equation (6) is used to express the Kaiser window function. 

 

𝑊𝐾𝑎𝑖𝑠𝑒𝑟(𝑛) = {
𝐼0(𝛽)

𝐼0(𝛼)
, 𝑓𝑜𝑟 |𝑛| ≤

𝑀−1

2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                                      (6) 

 

3.3) Feature Extraction (Mutual information) 

MI is a nonparametric way to gauge how relevant two variables are to one another. A 

good framework for quantifying these ideas is offered by Shannon's theory of 

information [20]. Assume that the class labels are represented by a discrete-valued 

random variable C, whereas a continuously-valued random feature vector is 

represented by a random variable X. According to Shannon's information theory, 

entropy H(C) may be used to quantify the uncertainty of class label C as  

 

𝐻(𝐶) = − ∑ 𝑃(𝑐)𝑐𝜖𝐶 𝑙𝑜𝑔 𝑃(𝑐)                                                                       (7) 

 

A discrete random variable C's probability is represented as p(c). The uncertainty of C 

is quantified by the conditional entropy as s, given a feature vector X.  

 

𝐻(𝐶|𝑋) = − ∫ 𝑃(𝑥)(∑ 𝑃(𝑐|𝑥)𝑐𝜖𝐶 log 𝑃(𝑐|𝑥))𝑑𝑥                                  (8) 

 

Where P (c x) represents the conditional probability for variable C given X.  

The conditional entropy frequently equals or surpasses the initial entropy. When 

variables X and C are not related, the conditional entropy is equal. By definition, the 

MI is the amount that reduces the class uncertainty. Consequently, H(C) − H (C X) = I 

(X; C). Following the application of p (c, x) = p (c x) p(x) and ∫ = x You may write p(c) 

p (c, x) dx, I as  

 

𝐼(𝑋; 𝐶) = ∑ ∫ 𝑥 𝑐𝜖𝐶 𝑝(𝑐, 𝑥)𝑙𝑜𝑔
𝑃(𝑐,𝑥)

𝑝(𝑐)𝑝(𝑥)
𝑑𝑥                                            (9) 
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There is a strong correlation between two random variables if their MI is high. Only in 

the event that the two random variables are completely independent, the MI is zero  

Features having a larger quantity of MI relative to classes are considered useful in 

classification issues. Two Bayes error constraints support the usage of MI for feature 

extractions. Raviv and Hellman's upper limit, p (H(C) I (X; C)) 2 e ≤ −, is the first 

bound.  

 

 

3.4) Feature Selection (Linear Discriminant Analysis) 

Using the Fisher criterion below, LDA seeks to determine the ideal projection matrix 

𝑊𝑜𝑝𝑡 ∈  𝑅𝑛×𝑝 in in order to calculate the maximum proportion of the anticipated 

samples within-class scatter SW to between-class scatter SB:  

𝐽(𝑊𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 
||𝑊𝑇𝑆𝐵𝑊||

||𝑊𝑇𝑆𝑊𝑊
)                                                (10) 

Where SB and SW are defined as the between and within class covariance: 

 

                    𝑆𝐵 = ∑ 𝑝𝑖(𝑥𝑖̅ − 𝑥̅)𝑁
𝑖=1 (𝑥𝑖̅ − 𝑥̅)𝑇                                       (11) 

 

 

𝑆𝑊 =
1

𝑚
∑ ∑ (𝑥𝑖̅ − 𝑥̅)𝑥∈𝐶𝑖

𝑁
𝑖=1 (𝑥𝑖̅ − 𝑥̅)𝑇                                                 (12) 

 

Where x is the overall mean vector, i x is the ith class mean, mi is the number of training 

samples for the ith class, and (x_i ) m is the priori probability of each class. The 

eigenvectors linked to the greatest eigenvalues of the extended eigenvalue problem 

below are the ideal 𝑊𝑜𝑝𝑡 in order to maximize. 

 

𝑆𝐵𝑊𝑖 = 𝜆𝑖𝑆𝑊𝑊𝑖                                                                               (13) 

This important eigen vectors of -1 B W S S that correlate to this eigenvalue λi can be 

solved to calculate the solution. The transformation matrix W's row vectors are then 

column vectors wi. It should be mentioned that only eigenvectors that match 

eigenvalues carrying the majority of the energy that is, the whole dispersion should be 

chosen. The fact The fact that this transform decor links the SB and SW matrices is 

another intriguing feature. No more features may be added than this since SB's rank is 

at a maximum of N-1.  

 

 

 



2025 123(4 )

269

3.5) Deep Learning Model (CNN-LSDM) 

CNN's capacity to concentrate on the most pronounced components inside the field of 

vision makes it a popular choice for feature engineering. In time series, LSTM is widely 

used because to its capacity to grow in accordance with the temporal sequence. A CNN-

LSTM-based stock forecasting model is created based on the traits of CNN and LSTM. 

The input layer, pooling layer, LSTM hidden layer, one-dimensional convolution layer, 

and complete connection layer are all included in the structural diagram of the CNN 

and LSTM models, which is displayed in Figure  

 

 Input layer  

 

                                                    Flatten             LSTM Layer        Dense layer              Prediction              

                                                                                                                                                   

                                                                                                                                                 Sigmoid activated  

                                                                                                                                                               out layer 

                                                                                                                                             

   

                        

           

 

 

 

 

 

 

                        Max pooling layer  

Figure 2 CNN –LSDM architecture 

The problem is solved and the network training cost is reduced by adding following 

the convolution layer with a pooling layer to lower the feature dimension. Although 

the convolution layer collects the properties of the input, the retrieved feature 

dimensions are extremely high. 

𝑙𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡 ∗ 𝑘𝑡 + 𝑏𝑡)                                                      (14) 

Where xt is the input vector, the convolution kernel's weight is kt, the bias is bt, the 

activation function is tanh, and the output value following convolution is lt. 

The LSTM network model was created to address the persistent issues of 

disappearance and gradient explosion in RNN. Text analysis, speech recognition, and 

emotional analysis have all made substantial use of it due to its ability to provide very 

accurate predictions and its own memory. Forecasting the stock market has also made 

     Convolutional layer                                                                                       
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use of it. A typical RNN has a single repeating module with a straightforward internal 

structure. 

The forget gate receives both the output value from the previous instant and the input 

value from the current instant. Calculating the forget gate's output value is the next 

step, as indicated by the formula below. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)                                                   (15) 

 

Where xt is Wf is ht−1 is the output value from the previous instant, bf is the bias, the 

weight of the forget gate, and the present time is the input value. The range of foot 

values is 0 to 1. The input gate receives both the present time's input value and the 

previous time's output value. Following computation, the following formula indicates 

the output value of the input gate and the candidate cell's state. 

𝑖𝑡 = 𝜎(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                      (16) 

𝐶𝑡̃ = tanh (𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                              (17) 

When Wi stands for the input gate's weight, bi for its bias, Wc for its weight, and bc 

for its candidate input g's bias; the numbers range from 0 to 1. Update the current cell 

status as follows:  

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃                              (18) 

    When the output gate receives -e output ht−1 and input xt as input values at time t, 

the output is generated as follows. 

  𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                   (19) 

Where Wo ot has a range of values between 0 and 1, bo is the output bias, and is the 

weight of the output gate. The following illustrates how the LSTM's output value is 

determined by calculating the output of the output gate and the state of the cell. 

ℎ𝑡 = 𝑜𝑡 ∗ tan (𝐶𝑡)                                                                   (20) 

 

4) Result and discussion 

Five metrics have been utilized to percentage classification accuracy, sensitivity, 

specificity, precision, and F1-score are used to assess The effectiveness of the proposed 

FoG prediction models. The percentage of successfully categorized cases among all 

instances is known as classification accuracy. It is preferred to have high precision. But 

for datasets that are unbalanced, it might not be enough. The distribution of 

successfully and erroneously categorized examples across classes is not revealed by it. 

By dividing the overall number of positive forecasts by the number of real positive 

predictions, precision is computed. When false positive costs are substantial, it is 

essential. The precision of the model aids in evaluating its capacity to prevent false 

positives. Conversely, the proportion of actual positive projections to all actual positive 
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instances is known as sensitivity. When the cost of false negatives is high, it is essential. 

Sensitivity aids in assessing the model's ability to detect positive examples. Specificity 

is defined as the ratio of actual negative events to actual negative projections. It 

assesses the model's ability to identify negative cases. The harmonic mean of sensitivity 

and accuracy is known as the F1-score. It is a helpful indicator of an unequal 

distribution of classes. It provides a balance between accuracy and sensitivity. All 

performance measures were based on the confusion matrix (Equation 1–5). 

Classification Accuracy= 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                           (21) 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                          (22) 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                          (23) 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                          (24) 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                     (25) 

Here 𝑇𝑃 ,  𝑇𝑁 ,  𝐹𝑃 , and 𝐹𝑁  are, in order, false positive, true negative, true 

positive, and true negative. 

The mean value of the gait characteristics, as determined by the 3D motion capture 

system and wearable accelerometer data, is displayed in Table 1The wearable 

accelerometer-based approach and the five gait parameters obtained from the 3D 

motion capture technology exhibit a good connection. The suggested method's 

estimated walking speed, stride length, step time, and stride length demonstrated a 

robust association with the equivalents obtained from the 3D motion capture system. 

displays the outcomes of the four classifiers that were used. The following computer 

specifications are used to implement the Google Colab environment's categorization 

algorithms: Windows 10, an Intel Core i7-7700 CPU running at 3.6 GHz 64-Bit, and 

8 GB of RAM. 

 

Table 1 Gait parameter mean value derived from 3D motion capture and wearable 

accelerometer-based estimate. 

 

S. No Step time Stride time Step length Stride 

length 

Walking 

time 

Left Leg 7.21 6.58 6.85 7.23 7.20 

Right leg 7.35 7.21 6.53 6.80 6.98 
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Figure 3 The average gait parameter error rate for the left and right legs was 

determined using a 3D motion capture system and a worn accelerometer. 

The figure 3 presents a comparison between the left and right legs during a walking 

cycle, showing key walking metrics, including walking duration, stride length, step 

length, and stride time. The left leg has a slightly shorter step time (7.21 seconds) 

compared to the right leg (7.35 seconds), indicating that the left leg is completing its 

step faster. Additionally, the stride time for the left leg (6.58 seconds) is shorter than 

that of the right leg (7.21 seconds), suggesting a quicker overall cycle for the left leg. 

In terms of distance, the left leg also covers a longer step length (6.85 meters) and stride 

length (7.23 meters) compared to the right leg, which has a step length of 6.53 meters 

and a stride length of 6.80 meters. Finally, the walking time for the left leg (7.20 

seconds) is slightly longer than for the right leg 6.98 seconds. 

Table 2 Hybrid CNN-LSDM Classifier 

Simulation 1 2 3 4 5 6 7 8 9 10 Mean 

 

Accuracy 85.71 88.57 

 

88.57 

 

91.42 

 

88.57 

 

88.57 

 

91.42 

 

88.57 

 

88.57 

 

91.42 

 

 

89.139 

Sensitivity 85.11 87.91 87.91 90.89 87.91 87.91 90.89 87.91 90.89 88.524 88.524 

Specificity 85.34 

 

88.12 88.12 91.21 88.12 88.12 91.21 88.12 88.12 91.21 88.769 

 

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

Left Leg Right leg

Step time Stride time Step length
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The table 2 average mistake rate was less than 10%. At 91.42%, the CNN-LSDM The 

highest accuracy is provided by a classifier using a radial basis function. It shows that 

we were able to correctly predict 46 patients out of 15 patients that included both 

classes. Additionally, it provides the highest specificity and sensitivity, 91.21% and 

90.89%, respectively. 

 

                                                    Confusion Matrix 

 

9 1 

              1                           4 

                                                         FoG                    No FoG 

                                                                  Predicted Label 

Figure 4 Confusion matrix for the proposed approach 

This result shows that the system accurately classified 32 of the 36 FoG patients as 

FoG and 14 of the 15 no FoG patients as no FoG. Figure 4 displays the FoG 

classification confusion matrix. 

 
Figure 5 Adafruit IO Cloud 



2025 123(4 )

274

The Figure 5 shows the values of accuracy 85.71%, Efficiency 85.54%, and Sensitivity 

85.11% provide key insights into this performance of a DL model related to FoG likely 

in the context of Fo Computing or IoT data analysis. Accuracy refers to the overall 

proportion of correct predictions made by the model, with 85.71% of its predictions 

being accurate. Efficiency measures how well the model utilizes computational 

resources, and an efficiency score of 85.54% indicates that the model achieves good 

results while maintaining effective use of resources such as processing time or memory. 

Sensitivity, also known as recall, measures how effectively the model identifies actual 

positive cases, and with a value of 85.11%, the model is capable of correctly identifying 

85.11% of all the positive instances. These three metrics together give a clear picture 

of how well the model performs in terms of prediction accuracy, resource efficiency, 

and its ability to detect relevant outcomes, making it a balanced and reliable model for 

practical use. 

5) Conclusion 

In conclusion, the proposed multimodal sensor fusion approach combined with deep 

learning and IoT technology provided an innovative and effective solution for real-time 

prediction of FoG in PD patients. By integrating data from various sensors (IMU, 

EMG, EEG, and foot pressure sensors) and leveraging advanced techniques like feature 

extraction, feature selection, and a hybrid CNN-LSTM model, the system successfully 

captured both spatial and temporal patterns in gait data. The real-time nature of the 

IoT-based platform allowed for continuous monitoring and timely interventions, such 

as cueing strategies or medication adjustments, which significantly improved patient 

outcomes. The experimental results highlighted the superiority of the proposed model 

over traditional machine learning approaches, suggesting its potential for enhancing 

mobility, safety, and the overall quality of life for PD patients. This approach 

represented a significant step toward the development of intelligent, wearable 

monitoring systems capable of providing continuous, remote healthcare support. 

 


