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Abstract 

Heart disease is one of the diseases that is responsible for the death of millions of people each 

year worldwide. It is considered one of the main diseases in middle-aged and elderly people. 

The increasing rate of heart disease cases, high mortality rate, and medical treatment 

expenses necessitate early diagnosis of symptoms. Prediction of cardio vascular disease is a 

critical challenge in the area of clinical data analysis Data science related Diagnosis and 

prediction of heart related diseases requires more precision, perfection and correctness. Deep 

Learning (DL) models are becoming increasingly popular for use in a wide range of clinical 

diagnostic tasks. Making accurate predictions is essential for such tasks because the results 

can have a big impact on patients and reduce mortality. DL algorithms for efficient 

identification of heart disease plays an important role in healthcare, especially in cardiology. 

Previously Machine learning algorithms used for feature extraction has some problems, there 

are less efficient for complex risk stages and increased computation time, and Feature 

extraction is inaccurate for classification, and unreliable. When extensive data exist, deep 

learning techniques can overcome some of those limitations.To overcome the issues, the 

performance of the deep learning-based Software Cost Estimation Technique using SoftMax 

deep Scaling Gated Adverbial Neural Network (SmDSAN2) for accurate software cost 

estimation. Initially we collected the dataset form standard repository and initially we started 
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the first step is data preprocessing for reducing null and unbalance values based on Min-Max-

Z score normalization (Mm- Z-score).  To utilizing the feature margin range is using the 

threshold values and it’s based on Fuzzified Support Margin Impact Rate (FSMIR). And third 

step is Feature selection based on threshold values for selecting the maximum weighted range 

and also selecting the nearest values based on Particle Swarm Intelligence (PSI). It iteratively 

assigned to ranks feature importance, removes the least important, and rebuilds the model 

until desired feature subset is obtained. Final stage is classification is based on SoftMax deep 

Scaling Gated Adversial Neural Network (SmDSAN2) is evaluating the heart disease risk 

prediction and reducing the false rate for analyzing the It has the ability to predict the risks 

based on SmDSAN2algorithm has shown high accuracy for Predict the dataset. Predicting 

techniques used by categorizing the approximation of risk level developed using Fuzzified 

margin rate to identify in multiclass dataset. SmDSAN2algorithm will help the Healthcare 

environment to follow rules standard and also reduce the risk.  

Keywords:  Healthcare, Heart disease, Data science, Deep Learning, Margin rate, Fuzzified, 

Neural Network, Z-score, Accuracy, Rules. 

1) Introduction 

Cardio Vascular Diseases (CVDs) continue to be among the leading causes of death globally, 

while early and accurate prediction models remain paramount to reducing associated risks. 

With the help of state-of-the-art computation tools, large-scale clinical and physiological data 

have been used to risk models for heart disease 1,2. Deep Learning (DL) has become 

widespread due to its ability to work with high-dimensional data, the possibility of obtaining 

relevant patterns, and its higher predictive performance compared to conventional machine 

learning methods 3,4. DL is applied to cardiovascular diseases, including congenital heart 

disease (CHD), symptom regression analysis, and real-time hybrid systems 5. 

However, some challenges are still key in the operation of CVD. First of all, it is still 

important to note that clinical datasets for cardiovascular diseases are often significantly 

unbalanced, affecting the model's quality and its ability to detect rare but quite significant 

cases 6,7.  

___________ 
1T. Amarbayasgalan, et al., in IEEE Access, vol. 9, pp. 135210-135223, 2021, Doi: 

10.1109/ACCESS.2021.3116974. 
2S. Ghorashi et al., in IEEE Access, vol. 11, pp. 60254-60266, 2023, doi: 

10.1109/ACCESS.2023.3286311. 
3A. Kumar, K. U. Singh et al., "A Clinical Data Analysis Based Diagnostic Systems for Heart 

Disease Prediction Using Ensemble Method. 
4B. Ramesh et al., in IEEE Access, vol. 12. 
5V. Vision Paul et al., doi: 10.1109/ACCESS.2024.3430898. 
6J. J. Gabriel et al.,"Accurate Cardiovascular Disease Prediction: Leveraging Opt_hpLGBM 

With Dual-Tier Feature Selection. 
7S. Bebortta, et al., "DeepMist: Toward Deep Learning Assisted Mist Computing Framework 

for Managing Healthcare Big Data. 
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Secondly, original deep learning architecture may produce low interpretability results, which 

can be disconcerting to clinicians who may not be able to validate the results 8. Third, there is 

a problem of overfitting or low generalization when working with other populations because 

of the insufficient development of methods for feature selection and model optimization 9. In 

the same way, large-scale deep neural network learning models present a high computational 

complexity when deployed in real-time in low-end devices 10. 

 

To overcome these challenges, this research investigates a new Soft Max Deep Scaling Gated 

Adversarial Neural Network (SMD-SGAN) to assess heart disease risk. The SMD-SGAN 

utilizes gated mechanisms to filter irrelevant noise while utilizing adversarial networks to 

address data imbalance and improve generalization. SoftMax deep scaling and other layers 

improve classification boundaries for prediction among groups and patients. This new 

architecture is intended to offer high interpretability, computational efficiency, and powerful 

performance, which can develop the foundation for hospital-effective, accurate, and practical 

heart disease risk prediction models. 

2)Literature Survey 

Heart disease (HD) is acknowledged as the primary cause of death globally, according to the 

author 11. Improving patient outcomes and delivering prompt medical interventions depend 

heavily on early identification and precise HD prognosis. The Hybrid Deep Neural Networks 

(HDNN) approach was used to achieve the goal. The computational burden of this approach 

resulted from the integration of several networks. A Support Vector Machine (SVM) 

approach was used to fix the problem. Inference times may increase if ensemble models are 

heavily relied upon. Hyperparameter adjustment of the ensemble components impacts the 

SVM's performance 12. 

______________ 

8Y. M. Ayano, et al., Interpretable Hybrid Multichannel Deep Learning Model for Heart 

Disease Classification Using 12-Lead ECG Signal," in IEEE Access. 
9D. Cenitta, et al., Ischemic Heart Disease Prediction Using Optimized Squirrel Search 

Feature Selection Algorithm," in IEEE Access. 
10M. Obayya, Jet al., Automated Cardiovascular Disease Diagnosis Using Honey Badger 

Optimization with Modified Deep Learning Model. 
11M. S. A. Reshan, et al., "A Robust Heart Disease Prediction System Using Hybrid Deep 

Neural Networks. 

12Rath, A., Mishra, D., et al., Imbalanced ECG signal-based heart disease classification using 

ensemble machine learning technique.  

 

 



2025 123(4 )

212

Although HD has a low global frequency, it is nonetheless a frequent condition that causes 

death, according to the author 13. Thus, early MI signal detection can lower mortality. A Deep 

Convolutional Neural Network (DCNN) approach was used to achieve the goal. To help 

cardiologists identify HD early, DCNN with focal loss is a useful technique for making a 

quick and accurate HD diagnosis. Without investigating more straightforward interpretable 

models, it might not generalize for unknown datasets and rely too heavily on DL.Hybrid  

 

Convolutional Recurrent Neural Network (HCRNet) technology was used to address the 

problem. Cardiologists can use it to promptly diagnose arrhythmias and accurately 

distinguish different types of heartbeats. For multi-class situations, HCRNet might be overly 

specialized, which would restrict generalization. High accuracy necessitates substantial 

hyperparameter optimization 14. 

As one of the major causes of death, the author15 commented upon how hard it is to predict 

cardiac conditions like heart attacks. This is because it is difficult and takes a lot of 

knowledge and expertise to foresee these conditions. This problem was fixed by using the 

Synthetic Minority Oversampling Technique (SMOTE). Artificial data artefacts could be 

introduced when employing methods such as SMOTE. Furthermore, it ignores class disparity 

across diverse real-world populations. To fix the problem, an Auxiliary Classifier Generative 

Adversarial Network (ACGAN) technique was used. It was applied to resolve the issues 

brought on by the dataset's imbalance. In the absence of extra layers or components, it could 

have trouble identifying temporal correlations in ECG data. Due to inadequate testing on 

external datasets, the results can exaggerate generalizability 16. Extensive data preprocessing, 

the requirement for features engineering, and guaranteeing the accuracy of classification 

findings were the goals of the author 17. 

_______ 

13Hammad, M., et al. Myocardial infarction detection based on deep neural network on 

imbalanced data.  

14Luo, X., et al.,multi-classification of arrhythmias using a HCRNet on imbalanced ECG 

datasets. Computer Methods and Programs in Biomedicine, 208, 106258. 

https://doi.org/10.1016/j.cmpb.2021.10625 

15Pandey, A... et al. Mitigating class imbalance in heart disease detection with machine 

learning. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19705-8  

16Du, C., et al., Classification of Imbalanced Electrocardiosignal Data using Convolutional 

Neural Network. Computer Methods and Programs in Biomedicine. 

17Waqar, M., et al., 2021(1), 6621622. https://doi.org/10.1155/2021/6621622  
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An improved SMOTE technique was used to achieve the goal. It guarantees that cardiac 

attacks may be accurately predicted. RR intervals combined with Higher-Order Statistics with 

LSTM (RRHOS-LSTM) and CNN-Long Short-Term Memory (CNN-LSTM) were used to 

address the problem. It was successfully utilized to draw attention to aberrant heartbeat 

classes. The suggested approach may result in decreased interpretability and increased 

computing complexity and delay 18. 

According to the author 19, creating efficient analytical models is essential to using ECG data 

for accurate heart disease identification. A Generative Adversarial Network (GAN) approach 

was used to achieve the goal. However, the unpredictability of precise ECG signals might not 

be adequately captured by the generated data. To prevent mode collapse or low-quality 

samples, careful training is necessary. A DL and Fuzzy Clustering (Fuzz-Cluster) 

methodology was used to fix the problem. This method categorized The ECG signals 

according to their corresponding cardiac conditions. Nevertheless, it might not scale 

effectively for real-time applications or big datasets. High-dimensional ECG features may be 

complex for the method 20. 

According to the author, early detection of cardiac arrhythmias is essential to reducing their 

potentially dangerous effects 21. However, manually analyzing ECG signals takes a lot of 

time and is prone to errors. A Synthetic Minority Over-Sampling (SMO-S) methodology was 

used to fix the problem. It was applied to enhance overall performance and dataset balance. 

Without appreciable accuracy gains, it may be redundant. It may thus struggle to adjust to 

various datasets. A Self-Organizing Map with Autoencoder (SOM-AE) methodology was 

used to fix the problem. Robustness may be limited by SOM-AE's higher training complexity 
22. 

___________ 

18E. Essa et al., in IEEE Access, vol. 9, pp. 103452-103464, 2021, doi: 

10.1109/ACCESS.2021.3098986. 

19Wang, Z., et al., Hierarchical deep learning with Generative Adversarial Network for 

automatic cardiac diagnosis from ECG signals.  

20Kumar, S., et al.,Computers in Biology and Medicine, 153, 106511. 

https://doi.org/10.1016/j.compbiomed.2022.106511  

21Zabihi, F., et al., An electrocardiogram signal classification using a hybrid machine learning 

and deep learning approach.  

22Rath, A., et al., Informatics and Systems, 35, 100732. 

https://doi.org/10.1016/j.suscom.2022.100732  
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Using a feature selection approach, the author 23 sought to create a precise Machine Learning 

(ML) method for early detection of cardiac disease. ABoost approach was used to achieve the 

goal. It was used to determine which classifier produces the highest percentage of accurate 

predictions for heart disease. It might not perform as well as the most advanced DL 

techniques. The problem was solved by using a two-dimensional CNN approach. It 

successfully distinguishes between multi-cycle normal and pathological heartbeats. It lacks 

validation on external, noisy ECG datasets, is computationally costly, and is susceptible to 

noise 24. 

The author covered the difficult task of predicting heart attacks from stroke patient data 25. To 

fix the problem, an Under Sampling-Clustering-Oversampling (UCO) methodology was 

used. This methodology produces almost balanced data for training ML models for heart 

attack prediction. However, the complex temporal dynamics of ECG signals in stroke patients 

may be complicated for UCO to capture fully. A CNN-LSTM methodology was also used to 

fix the problem. In real-time settings, it might be slow and resource-intensive. Without 

sufficient regularization, the CNN-LSTM may overfit 26. 

 

The author 27 used Principal Components Analysis with LSTM (PCA-LSTM) for 

classification and noise reduction. For lengthy ECG sequences, PCA-LSTM is vulnerable to 

exploding/vanishing gradient issues, and the preprocessed data's caliber significantly impacts 

how well it performs. A CNN-LSTM methodology was used to address this problem. It was 

employed to find irregularities in the heartbeat. CNN-LSTM frameworks are not comparable 

to other or simpler systems and frequently have enormous processing demands 28. 

According to the author 29, addressing imbalanced datasets is a common challenge for 

classical ML algorithms forecasting cardiac disease. Wavelet Transformation and CNN (WT-

CNN) were used to fix the problem. Healthcare practitioners can effectively employ the 

provided model to predict cardiac disease because the WT-CNN improves classification 

accuracy compared to previous classification methodologies. It might, however, miss crucial 

information or add noise, and it might not provide enough speed improvements to offset their 

increased complexity.  

23H. F. El-Sofany, "Predicting Heart Diseases Using Machine Learning and Different Data 

Classification Techniques. 

24Li, Y., Luo, J., et al., A deep learning approach to cardiovascular disease classification using 

empirical mode decomposition for ECG feature extraction.  

25M. Wang, X. Yao and Y. Chen, "An Imbalanced-Data Processing Algorithm for the 

Prediction of Heart Attack in Stroke Patients," in IEEE Access. 

26Rai, H.M., Chatterjee, K. Hybrid CNN-LSTM deep learning model and ensemble technique 

for automatic detection of myocardial infarction using big ECG data.  
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A ResNet with BiLSTM approach was used to fix the problem. Through the local feature 

extraction portion of the produced ECG feature map, the model successfully combines the 

position data of the closest neighbors. It might miss uncommon but clinically essential 

abnormalities, though. Furthermore, it could not be resilient to hidden ECG patterns 30. 

3)Proposed Methodologies 

In this section we briefly described about the proposed method which is used to predict the 

heart disease with accurate. To perform the proposed method with more accurate we use heart 

disease dataset which is available at Kaggle website. In this propose method we perform four 

phases like preprocessing, impact rate detection, feature selection, and classification. In the 

first phase we use Mm- Z-score, in second phase we employ FSMIR, then we perform PSI 

method and finally use SmDSAN2 method for classification. In below figure 1 we illustrate 

the architecture diagram of the proposed method. 

 

 

 

 

 

 

 

 

_______________ 

27M. A. Khan and Y. Kim, “Cardiac Arrhythmia Disease Classification Using LSTM Deep 

Learning Approach. 

28Sowmya, S., & Jose, D. (2022). Contemplate on ECG signals and classification of 

arrhythmia signals using CNN-LSTM deep learning model. Measurement: Sensors, 24, 

100558.  

29Mohammad, F. (2022). WT-CNN: A Hybrid Machine Learning Model for Heart Disease 

Prediction. Mathematics, 11(22), 4681. https://doi.org/10.3390/math11224681  

30Ma, S., Cui, J., Xiao, W., & Liu, L. (2021). Deep Learning-Based Data Augmentation and 

Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms.  
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Figure 1. Architecture diagram of the proposed method 

Mm-Z-score is an extension of the Min-Max scaling and Z-Score normalization in that it 

scales the features into a standardized range. That way, none of them is overloaded due to the 

size of the feature itself, which makes the dataset good for the DL algorithms. While all 

features of FSMIR affect the quantitative increase/decrease of the probability or certainty of 

the existence of heart diseases in a patient, FSMIR directly measures how significantly each 

distinctive feature influences the target variable. PSI also provides an ability to choose 

features with the highest statistical and predictive importance, by which only the most 

informative data will be given to the classifier. In the classification, PSI ensures that acme 

physiological parameters like maximum heart rate, resting blood pressure, and cholesterol 

levels are provided with a higher ranking. SmDSAN2 establishes itself as the state of the art 

in terms of performance using gating mechanisms, adversarial robustness, and deep scaling. 

SmDSAN2 has a high capacity for dealing with many data samples. It can be modified to 

accommodate different numbers and types of features depending on their use in 

specializations of clinical practice. 
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3.1)  Dataset Assortment 

In this paper, the proposed method is applied to the heart disease data set with the highest 

accuracy for finding the presence of heart disease. This dataset is collected from the Kaggle 

website: https:/ /www.kaggle.com/datasets/johnsmith88/heart-disease-dataset. This data set 

dates from 1988 and consists of four databases: Cleveland, Hungary, and Switzerland. Long 

Beach V. It has 76 features except for the decision feature we are predicting, but only 14 

features are used for all reported experiments. The “target” field can be described as the 

identification of heart disease in the patient. Universal is an integer-valued variable, where 0 

= no disease and 1 = disease. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Diagram for theattributes of heart disease dataset 

3.2)   Min-Max- Z score normalization (Mm- Z-score) 

The Min-Max-Z Score Normalization (Mm-Z Score) pre-processing is a general data-

preprocessing technique developed to enhance the information quality of datasets in heart 

disease. Missing values in such essential attributes as cholesterol and blood pressure are 

treated by imputation (mean, median, or mode). Min-max normalization follows to normalize 

numerical features like heart rate and blood pressure into comparable normalized forms 

between 0 and 1. Standardization is performed next by applying Z-score normalization on the 

scaled features to cancel out the effect of outliers, with means equal to 0 and standard 

deviations equal to 1. Lastly, another form of imbalance within the target variable, such as in 

the case of the presence and absence of heart disease, is balanced using SMOTE, which 

creates nearer synthetic samples. This combined pipeline ensures that the obtained dataset 

includes several modifications: cleaning, correcting the imbalance, and rescaling data that 
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helps machine learning models more accurately predict heart disease.In the equation 1 we 

perform the min-max normalization to scale the heart disease features, 

𝐹𝑠 =
𝐹𝑣−𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛
         (1) 

Let assume, 𝐹𝑠 as scaled features of the heart disease dataset, 𝐹𝑣 as actual value of the feature 

(for instance, cholesterol, blood pressure, age, etc.,), 𝐹𝑚𝑖𝑛 as minim um value in the feature 

column (minimum blood pressure value in the dataset), and 𝐹𝑚𝑎𝑥 as maximum value in the 

feature column. Numerical features with different scales, such as blood pressure, heart rate, 

cholesterol levels, etc., are frequently included in datasets related to heart disease. To make 

these properties similar, min-max normalization scales them to a common range, like [0, 1]. 

This adjustment ensures all numerical features, such as blood pressure or cholesterol, fall 

between 0 and 1 for improved feature comparison.After Min-Max normalization we perform 

Z-score standardization through equation 2 to further normalize the scaled features, 

𝑍𝐹 =
𝐹𝑠−𝜇𝑠

𝜎𝑠
          (2) 

Let assume, 𝐹𝑠 as feature value of the min-max scaled, 𝜇𝑠 as mean of feature value of min-

max scaled, and 𝜎𝑠 as standard deviation of feature value of min-max scaled. The Z-score 

assists in adjusting for different feature standard deviations and centering feature values 

around 0. This equation ensures that features like heart rate and cholesterol, which have 

varying spreads (variability), contribute evenly to the model. Because heart illness datasets 

frequently contain missing or null values in crucial characteristics like cholesterol, age, or 

heart rate, we handle the null values in the heart disease features using equation 3, 

𝐹𝑝 = {
𝐹𝑣 ,   𝑖𝑓 𝐹𝑣 ≠ 0
𝐹,   𝑖𝑓 𝐹𝑣 = 0

         (3) 

Let assume, 𝐹𝑝 as feature value after handling null values, 𝐹𝑣 as original feature value, and 𝐹 

as mean value of feature, by following equation we compute the 𝐹, 

𝐹 =
∑ 𝐹𝑥
𝑛
𝑥=1

𝑛
          (4) 

Before normalization, these missing values must be fixed to prevent computational problems. 

To preserve data integrity, null values are substituted with the mean, median, or mode. Mode 

imputation is favored for categorical characteristics (e.g., gender, type of chest pain). Since 

the target variable (e.g., 0 for no disease, 1 for disease) is frequently unbalanced in heart 

disease datasets, we then utilize equation 5 to correct the class imbalance. So, we use 

resamples technique like SMOTE (Synthetic Minority Oversampling Technique) to balance 

the dataset,  

𝐹𝑁 = 𝐹𝑀 + 𝛿. (𝐹𝐶 − 𝐹𝑀)        (5) 

Let assume, 𝐹𝑁 as synthetic feature value which is developed to minority class, 𝐹𝑀 as 

previous feature value from minority class, 𝐹𝐶 as nearest neighbor feature value, and 𝛿 as 
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random value in the range [0,1]. This equation generates synthetic samples for the minority 

class (e.g., patients with heart disease) to balance the class distribution, ensuring unbiased 

model performance. Imputation methods help ensure all values required in an analytic model 

are gathered and processed, not missing the all-important null values; on the other side, 

SMOTE deals suitably with providing balance in the target variable where it is skewed. The 

proposed hybrid pipeline also improves the data set's general quality and repeatability, 

allowing the models to learn meaningful patterns easily. Altogether, the Mm-Z Score 

enhances the accuracy, stability, and fairness of heart disease prediction systems and can 

successfully be used in the preprocessing stage of healthcare analytics and machine learning 

tasks. 

3.3)  Fuzzified Support Margin Impact Rate (FSMIR) 

The Fuzzified Support Margin Impact Rate (FSMIR) is aimed explicitly at feature selection, 

where the margin range of the features obtained from the threshold value can be applied to 

datasets concerning heart disease. In FSMIR, fuzzy logic is used to measure the contribution 

of each feature to separating between classes after spotting their membership in specific 

support and importance ranges. Then, the support margin of each feature is computed, 

meaning how much the feature can contribute towards the generation of classification 

boundaries. A quantitative degree of membership scale is used to partition the feature in the 

defined fuzzy sets, for example, low, medium, high, and so on, depending on the proximity of 

this value to a certain constructed threshold. Through aggregating the membership degrees, 

FSMIR determines features that enjoy fair margins toward improving the classification and 

reducing overlap. It is further beneficial with heart disease datasets since FSMIR aids in 

somehow identifying the suitable feature selection for enhancing performance yet negating 

feature noise for the disease.In equation 6 we compute the support margin 𝑆of heart disease 

dataset, 

𝑆(𝑓𝑦) =
1

𝑛
∑ |𝑖𝑥,𝑦

+ − 𝑖𝑥,𝑦
− |𝑛

𝑥=1         (6) 

Let assume, 𝑓𝑦 as value for patient s with heart disease (positive class), 𝑖𝑥,𝑦
+  as value of 

feature, and 𝑖𝑥,𝑦
−  as value for patients without heart disease. Age, heart rate, cholesterol, and 

blood pressure are essential in the heart disease dataset. This formula determines how well a 

characteristic like cholesterol distinguishes people with and without heart disease. A more 

significant margin indicates a more discriminative trait.Then we filter the margin-based 

Threshold 𝑇 through equation 7, 

𝑇(𝑓𝑦) = {
1,   𝑖𝑓 𝑆(𝑓𝑦) ≥ 𝜃

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (7) 

We use statistical analysis or domain expertise to determine the threshold, θ. For instance, 

only features (such as systolic blood pressure variations between classes) with a support 

margin of at least five will be allowed to get through the filter if 𝜃 = 5. While less significant 

factors might be eliminated, characteristics like "age" might survive the filter since older 
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people may exhibit different patterns between groups.By following we perform fuzzy 

membership function through equation 8, 

𝜇𝑘(𝑓𝑦) =

{
 
 

 
 
0,       𝑖𝑓 𝑓𝑦 ≤ 𝑜𝑘∀𝑓𝑦 ≥ 𝑞𝑘
𝑓𝑦−𝑜𝑘

𝑝𝑘−𝑜𝑘
,   𝑖𝑓 𝑜𝑘 ≤ 𝑓𝑦 ≤ 𝑝𝑘

𝑞𝑘−𝑓𝑦

𝑞𝑘−𝑝𝑘
,   𝑖𝑓 𝑝𝑘 ≤ 𝑓𝑦 ≤ 𝑞𝑘

      (8) 

Let assume, 𝜇𝑘(𝑓𝑦) as membership degree of feature in subset (low, medium, and or high), 𝑘 

as fuzzy, and 𝑜𝑘, 𝑝𝑘, 𝑞𝑘 as parameters defining the triangular membership function for 𝑘. 

Linguistically, features are classified into "low," "medium," and "high." Cholesterol levels 

below 200 may be classified as "low" in the fuzzy set. A cholesterol level in the "medium" 

fuzzy set may be between 200 and 240. Above 240, cholesterol may fall into the "high" fuzzy 

set. The fuzzy membership function captures minute differences in feature values by 

assigning each feature to these sets in a graded manner.Then we compute the FSMIR𝑍 

through equation 9, 

𝑍(𝑓𝑦) = ∑ 𝑢𝑘
𝐾
𝑘=1 . 𝜇𝑘(𝑓𝑦)        (10) 

Let assume, 𝑍(𝑓𝑦) as fuzzified support margin impact rate for feature, 𝐾 as total number of 

fuzzy sets, 𝑢𝑘 weight assigned to fuzzy set, and 𝜇𝑘(𝑓𝑦) as membership degree of feature in 𝑘. 

The FSMIR value of each feature is calculated by summing up its memberships in fuzzy sets 

that have been given weights. Since "high cholesterol" is closely linked to heart disease, it 

might be heavy. "Low cholesterol" might weigh less. This formula offers a single metric to 

assess how significant characteristics such as "maximum heart rate" or "resting blood 

pressure" differentiate between patients with and without cardiac disease.Then we rank𝑅 the 

feature through equation 11, 

𝑅(𝑓𝑦) = 𝑠 (𝑍(𝑓𝑦)),    ∀𝑓𝑦 ∈ 𝐴       (11) 

Let assume, 𝑅(𝑓𝑦) as rank of feature on the basis of 𝑍 value, 𝑠 as sorting of features, and 𝐴 as 

set of all features in the dataset.Features including "age," "exercise-induced angina," 

"cholesterol levels," and "resting ECG results" are ranked according to their Z values. While 

variables with lower Z values might not be as important, those with higher Z values, such as 

"maximum heart rate during exercise," are probably more useful for predicting heart 

disease.After ranking we deploy threshold to select the top features through equation 12, 

𝐴𝑆 = {𝑓𝑦 ∈ 𝐴|𝑍(𝑓𝑦) ≥ 𝜏}        (12) 

Let assume, 𝐴𝑆 as set of selected features, and 𝜏 as selection threshold for 𝑍 values. This 

ensures that only the most relevant features, such as "exercise-induced angina" or "ST 

depression," are used for model training, improving interpretability and reducing 

overfitting.By selecting the most suitable features from the context, the FSMIR method is 

specifically ideal for datasets, such as those about heart disease, for which classification of 
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the core features is required. Using the support margin and fuzzy logic allows FSMIR to 

address the complexity and subtleties in an attribute such as cholesterol level or blood 

pressure. The equations guarantee that the adopted features offer the highest ability to 

distinguish between classes, enhance prediction efficiency, and can be explained by 

clinicians. 
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Figure 3. FSMIR Flowchart Diagram 
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The FSMIR flowchart illustrated in Figure 3 helps determine the marginal range of features 

from the initial values. This chart employs fuzzy logic to assess the contribution of each 

feature regarding the dataset associated with heart disease. 

3.4)   Particle Swarm Intelligence (PSI) 

Particle Swarm Intelligence (PSI) is a bio-inspired optimization algorithm derived from the 

swarm behavior of a particular group of particles, birds, or fish. When applied to the heart 

disease dataset for feature selection, the PSI can be employed to recognize those features 

making the most impact via a thresholding strategy. Individual and collective knowledge 

pertains to particles and how they pass from one location to another in the search space; each 

particle corresponds to a subset of features among the dimensions. The fitness of a particle is 

assessed with a fitness function that estimates how appropriate the selected features are to the 

goal result. This method establishes value limit factors to serve as a range of the best 

maximum feature weights and then identifies those approaching the ideal weight value. In 

discrete movements, particles shift the position and velocity parameters of their particles. It 

continues to improve feature subsets using the maximum relevance corresponding to the 

weighted threshold range pairs, with the features of weights nearest to the threshold. When 

synthesizing the present thresholding-based selection with the dynamic PSI, the future subset 

selection works efficiently in modeling heart-diseased datasets to boost the general model 

performance and interpretability. The PSI algorithm implies that each particle can be a subset 

of the features of the heart disease dataset. For instance, if a dataset has 𝑛 features (a list of 

features may include age, cholesterol level, blood pressure, etc.), each particle is represented 

by a vector of binary variables. Through the equation 13 we compute the feature subset, 

𝑖𝑥 = [𝑖𝑥1, 𝑖𝑥2, … , 𝑖𝑥𝑛]         (13) 

In this equation illustrate 𝑖𝑥𝑦 ∈ {0,1} for select the feature in the heart disease dataset, by 

selected 1, or not 0. Then we perform fitness function for feature selection through equation 

14 to evaluate the quality of a feature subset based on two main criteria like prediction 

accuracy of classification method, and simplicity of subset which is used toselecting fewer 

features for reduce complexity, 

𝐹(𝑖𝑥) = 𝛼. 𝐴(𝑖𝑥) − 𝛽.
𝑆(𝑖𝑥)

𝑇
        (14) 

Let assume, 𝐹 as fitness, 𝑖𝑥 as feature subset, 𝑆 as number of selected features, 𝑇 as total 

number of features in the 𝑖𝑥, and 𝛼, 𝛽 as weight coefficients which is used to balance the 

importance of accuracy and feature reduction. Higher fitness values correspond to subsets 

that maximize prediction accuracy while minimizing the number of selected features. After 

evaluate the quality of feature we update the velocity𝑣 of each particle through equation 15 to 

determines how its position (feature subset) changes over iterations, 

𝑣𝑥𝑦(𝑝 + 1) = 𝑢. 𝑣𝑥𝑦(𝑝) + 𝑎1. 𝑠1. (𝑞𝑥𝑦 − 𝑖𝑥𝑦(𝑝)) + 𝑎2. 𝑠2. (𝑑𝑦 − 𝑖𝑥𝑦(𝑝))  (15) 
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Let assume, 𝑣𝑥𝑦(𝑝 + 1) as updated velocity for feature 𝑦 of the particle 𝑥 at time 𝑝, 𝑢 as 

inertia weight controlling exploration and exploitation, 𝑎1, 𝑎2, as acceleration coefficients for 

personal and global best influences, 𝑠1, 𝑠2 as random values in the range [0.1]  to add 

stochasticity, 𝑞 as personal best solution and 𝑑 as global best solution. In this equation the 

best subset discovered by the particle so far and the best subset discovered by the entire 

swarm. By following we update the feature position on the basis of its velocity through 

equation 16, 

𝑖𝑥𝑦(𝑝 + 1) = {
1, 𝑖𝑓 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑣𝑥𝑦(𝑝 + 1)) > 𝑍

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (16) 

Let assume, 𝑍 as threshold, by following we perform sigmoid function through equation 17, 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑣𝑥𝑦) =
1

1+𝑒−𝑣𝑥𝑦
        (17) 

In this equation if the sigmoid function output is greater than the predefined threshold (e.g., 

0.5), the feature is selected (𝑖𝑥𝑦 = 1), otherwise 0 the feature is not selected. To further 

refine the selection process, the algorithm incorporates feature weights derived from their 

importance. In equation 18 we perform weight function, 

𝑢𝑦 =
𝐹𝐼(𝑦)

∑ 𝐹𝐼(𝑘)𝑛
𝑘=1

          (18) 

Let assume, 𝑢𝑦 as normalized weight of feature which ensure all weights sum to 1, 𝐹𝐼 as 

feature importance. Thresholds are used to prioritize features that contribute significantly to 

heart disease prediction, such as cholesterol level, age, and blood pressure. Then we perform 

the convergence on output function of the PSI method through equation 19, 

𝑑 = arg max(𝐹(𝑖1), 𝐹(𝑖2),… , 𝐹(𝑖𝑚))      (19) 

The basic steps of the present PSI algorithm are as follows: ‘the algorithm cycle is repeated 

until there is no better fitness value amplified in the entire process and that the maximum 

number of iterations is achieved.’ The last step is the feature subset that ranks in the global 

best position 𝑔, which leads to the maximum accuracy and minimum restiveness feature 

subset. In the case of a heart disease dataset, the PSI algorithm may select Age, Resting blood 

pressure, Cholesterol level, Fasting blood sugar, Maximum heart rate reached, and Exercise-

induced ST depression. These features are significant for diagnosing strokes, and selecting 

them increases model performance and decreases complexity. On the other hand, the PSI-

based technique ensures that only the essential features are kept, making the predictions 

believable and straightforward. 

3.5)  SoftMax deep Scaling Gated Adversial Neural Network (SmDSAN2) 

The process of classifying a heart disease dataset using the SoftMax Deep Scaling Gated 

Adversarial Neural Network (SmDSAN2) is a technical manner of trying to predict the 

various aspects related to heart disease risks and disposition while simultaneously trying to 
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ensure that the prediction does not lead to high rates of false prediction. SmDSAN2 applies 

adversarial neural networks, gating mechanisms, and SoftMax scaling for processing patient 

biometrics like heart rate, cholesterol levels, etc. This model employs gated units to control 

and filter out essential features. It also combines adversarial training to mitigate noise or 

imbalance in the dataset. While using SoftMax scaling, SmDSAN2 can produce correct class 

probabilities, which enhances the interpretability of the generated model outputs. This 

framework optimizes risk assessment and diagnosis by providing a more robust risk 

stratification method and improves true positive and negative rates. It allows for prompt and 

effective clinical decision-making to benefit the patient.In equation 20 we illustrate the input 

data, 

𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛}, 𝑖𝑥 ∈ ℝ
𝑠        (20) 

Let assume, 𝐼 as input dataset, 𝑖𝑥 as single patent features (like, heart rate, cholesterol), 𝑛 as 

total number of samples in dataset, and 𝑠 as dimensionality of the feature space. This 

equation represented as a multidimensional feature vector, where each sample includes 

patient-specific features. It may include ECG readings, maximum heart rate achieved during 

stress tests, etc. Then we perform gated mechanism𝑑 for feature selection through equation 

21, 

𝑑(𝑖) = 𝜎(𝑈𝑑. 𝑖 + 𝑏𝑑)         (21) 

Let assume, 𝑑(𝑖) as output of gate activation, 𝑈𝑑 as weight matrix for gating layer, 𝑏 as bias 

term, and 𝜎 as sigmoid activation function which is used to ensures output between 0 and 1. 

The gating mechanism ensures that only the most relevant features for predicting heart 

disease (e.g., heart rate, blood pressure) are prioritized.For example, the gating mechanism 

may give higher importance to features like elevated cholesterol or abnormal heart rate for 

identifying patients at higher risk. By following we perform adversarial training for improve 

robustness and generalization where a generator network introduces perturbations, and a 

discriminator learns to distinguish between real and adversarial samples.  In the equation 22 

we perform Generator, 

𝑖𝑎𝑑𝑣 = 𝑖 + 𝜖. 𝑠𝑖𝑔𝑛(∇𝑥ℒ(𝑖, 𝑗))        (22) 

Here, we perform the Discriminator 𝐻 loss, 

ℒ𝐻 = −𝔼[log(𝐻(𝑖))] − 𝔼[log(1 − 𝐻(𝑖𝑎𝑑𝑣))]     (23) 

Let assume, 𝑖𝑎𝑑𝑣 as adversarial output developed through adding perturbation to the 𝑖 

original input, 𝜖 perturbation input, ∇𝑥ℒ(𝑖, 𝑗) as gradient of the loss function with respect to 

the input, 𝐻(𝑖) as discriminator probability that 𝑖 is real sample.  Adversarial training 

improves the model’s robustness by generating slightly perturbed versions of the dataset (e.g., 

small variations in heart rate or cholesterol) and training the model to handle these 

variations.For heart disease data, adversarial examples might involve small changes in HR, 

BP, or CH to simulate real-world noise or sensor inaccuracies. By following we perform deep 
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scaling process for multilayer extraction across layers to capture hierarchical patterns in the 

dataset through equation 24, 

𝑜(𝑙+1) = 𝛼(𝑙). 𝑓(𝑈(𝑙). 𝑜(𝑙) + 𝑏(𝑙))       (24) 

Let assume, 𝑜(𝑙+1) output of the layer 𝑙, 𝑈 as weight matrix, 𝑏 as bias, 𝑓(. )as non-linear 

activation function (ReLU, Tanh), and 𝛼 as scaling factor. Deep scaling allows the model to 

focus on both high-level (e.g., patient age group) and low-level features (e.g., exact 

cholesterol levels).For heart disease, earlier layers might learn basic patterns like high 

cholesterol, while deeper layers might capture complex interactions between HR, BP, and 

AGE. Then we perform SoftMax function for the final classification step through equation 

25, 

𝑄(𝑗 = 𝑘|𝑖) =
exp(𝑃𝑘)

∑ exp(𝑃𝑦)
𝐾
𝑦=1

        (25) 

Let assume, 𝑄(𝑗 = 𝑘|𝑖) as probability of input belongs to class, 𝑃 as logit also unscaled 

output, 𝐾 as total number of classes (like heart disease present or absent).The SoftMax layer 

predicts the probability of heart disease presence or absence based on the processed 

features.For example, the SoftMax output might predict 𝑄(𝑗 = 1|𝑖), indicating an 85% 

chance of heart disease. Then we perform ℒ for optimization through equation 26, 

ℒ = ℒ𝐶 + 𝜆. ℒ𝑎𝑑𝑣        (26) 

Let assume, ℒ𝐶  as cross entropy loss, 𝜆 as weighting parameter to balance the two loss 

components, and ℒ𝑎𝑑𝑣 as adversarial loss from the discriminator. In equation 27 we perform 

ℒ𝐶  for classification, 

ℒ𝐶 = −
1

𝑛
∑ ∑ 𝑗𝑥,𝑘

𝐾
𝑘=1

𝑛
𝑥=1 log(𝑄(𝑗 = 1|𝑖𝑥))     (27) 

The loss function combines classification accuracy and robustness. This equation makes it 

possible for the model to predict heart disease accurately, but simultaneously, it is secure 

from adversarial perturbation. The SmDSAN2 model seamlessly uses a systematic approach 

to group the heart disease datasets. It starts with a gated mechanism that screens out facets 

like HR, BP, and CH, where only facets most related to heart ailments are allowed. For 

example, performing some adversarial training guarantees the model's resistance against 

noise, which would more or less mimic realistic distortions in medical readings. There is an 

extraction of hierarchical patterns in deep scaling that can comprehend essential and complex 

attributes of the feature. The SoftMax layer estimates the possibility of the presence of heart 

diseases, and a combined loss function also maintains the effectiveness and robustness of the 

network. This model allows calculating precise risk values with low false-positive and false-

negative values for practical clinical application. 
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Figure 4. Proposed SmDSAN2 Method Flowchart Diagram 

The SmDSAN2 method aims to assess heart disease risk probability through the flowchart in 

Figure 4, determine the existence of heart disease using the SoftMax layer, and predict 

different features associated with heart disease risk. 

4)  Result and Discussion 

The SmDSAN2 method proposed in this study utilizes various performance measures to 

predict heart disease and can detect HD using a Python-based Jupyter Notebook. With them, 

specificity, sensitivity, precision, F1-Score, accuracy, and time complexity can be used to 

obtain a valid estimate for predicting heart disease.  

Table 1. Simulation Parameter 
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As mentioned in Table 1, they use Python-based Jupyter Notebook to get the correct accuracy 

and detect HD with the support of the dataset. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝒯𝓅 + 𝒯𝓃

𝒯𝓅 + 𝒯𝓃 + ℱ𝓅 + ℱ𝓃⁄  

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝒯𝓅

𝒯𝓅 + ℱ𝓃⁄  

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝒯𝓃

𝒯𝓃 + ℱ𝓅⁄  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝒯𝓅

𝒯𝓅 + ℱ𝓅⁄  

 𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
⁄  

 

 

Figure 5. Accuracy performance in %  

Therefore, in Figure 5 and Table 2, we depict the accuracy performance of the deployed 

method and the existing methods. HDNN archives stand at 63.1%, DCNN at 72.4%, PCA-

LSTM at 85.7%, and the deployed method at 95.7%. According to the comparison, the 

SmDSAN2 stores data with higher accuracy than other techniques. Another advantage of its 

high accuracy is that the model often diagnoses patients with or without heart disease. This 

lowers the overall diagnosis error percentage and offers clinicians a solid method of planning 

additional medical tests. 
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256 48.1 53.7 57.4 63.7 

512 54.7 59.1 64.7 71.5 

768 59.4 64.7 71.5 77.4 

1024 63.1 72.4 85.7 95.7 

 

 

Figure 6Sensitivity performance in % 

To compare the sensitivity performance of the deployed method and the existing methods, we 

present it as follows in figure 6 and table 3. The accuracy rates for HDNN archives are at 

69.1%, DCNN is at 76.4%, PCA-LSTM at 81.5%, and the accuracy rates for the deployed 

method are at 94.6%. Although the SmDSAN2 employed method is compared to other 

methods, it achieves higher sensitivity when deployed. That is why sensitivity makes the 

model discover as many cases of heart disease as possible. High sensitivity reduces the risk of 

having a high percentage of patients with heart disease being overlooked. This is important as 

one may be suffering from heart problems but they have not been diagnosed, this can be life 

endangering. 
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256 53.7 59.7 65.7 74.8 

512 58.6 63.7 68.5 76.4 

760 64.1 67.9 76.9 86.4 

1024 69.1 76.4 81.5 94.6 

 

 

Figure 7. Precision performance in %  

In Figure 7 and Table 4, we highlight the precision performance of the deployed method and 

the existing methods. The HDNN stores 72.6%, DCNN is 79.5%, PCA-LSTM attains 82.3%, 

while the proposed method achieves 93.7%. As is revealed by comparing the deployed 

method with other methods, the SmDSAN2 stores a higher precision value. Precision, 

therefore, befits the situation by ensuring that when the model says there is heart disease, it is 

very accurate. Less false positives (where the AI system injudiciously diagnoses a person 

with heart disease), lower stress, medical procedures, and additional expenses when the 

individual is healthy. 

Table 4. Performance of precision in % 
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512 61.7 64.9 73.6 77.2 

760 66.1 71.5 78.2 89.5 

1024 72.6 79.5 82.3 93.7 

 

 

Figure 8. F1 Score performance in % 

In Figure 8 and Table 5, we exhibit the F1-Score performance of the deployed method and the 

existing techniques. The corresponding architectures of the HDNN archives is 76.2%, DCNN 

is 83.5%, PCA-LSTM is 87.6%; the architectures of the deployed method are 94.6%. The 

SmDSAN2 saves the trained F1 Score performance by evaluating deployed methods with 

other techniques. The F1-Score measures the ratio between the True Positive rate and an 

average of the False Positive rate and False Negative rate, which is very important when false 

positives and false negatives are costly. Thus, the high F1-Score shows that the model has a 

reasonable rate of diagnosing heart disease without compromising precision or sensitivity. It 

helps provide precise and detailed predictions at the same time. 
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760 71.2 77.4 84.9 89.2 

1024 76.2 83.5 87.6 94.6 

 

 

Figure 9. Time Complexity performance in ms 

In Figure 9, and Table 6 we plot time complexity analysis of the presented and typical 

approaches used in the deployment phase. The HDNN, in our experiments, saves 48.7 ms, 

while the DCNN saves 38.1 ms, the PCA-LSTM saves 27.4 ms, and the deployed method 

saves 13.7 ms only. SmDSAN2 uses the deployed method to achieve low time complexity 

compared to other methods in the literature. Low time complexity enables prediction, and this 

will not be time-consuming even when processing big data or raw data in real-time, for 

instance, monitoring patients in intensive care units. Quick predictions enhance timely 

medical choices that are enormously vital in cases of emergency situations where early 

diagnosis of heart diseases may help to avoid heart attacks and other related complications. 

Table 6. Performance of Time Complexity in ms 
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1024 48.7 38.1 27.4 13.7 

 

5)   Conclusion 

This research evaluates a risk prediction model for heart disease using an improved 

DL algorithm, SoftMax Deep Scaling Gated Adversarial Neural Network (SmDSAN2). By 

utilizing the heart disease dataset available on Kaggle, the proposed method achieves high 

accuracy and reliability through a structured four-phase workflow: Feature pre-processing, 

identification of impact rate, selection of features, and finally, classification of the data. The 

first phase uses Mm-Z-Score to normalize the data, standardize features, and eliminate the 

effects of outliers. In the second stage, FSMIR defines core features with the most significant 

shared impact on the disease, discarding any unimportant factors. The third phase applies the 

PSI method to select the most essential features for inclusion in the feature subset since 

including all features increases the processing time and leads to over-emphasis of some 

features. Last, in the SmDSAN2 model, we apply novel solutions such as the gating 

mechanisms, adversarial robustness, and deep scaling to attain accurate, interpretable, and 

robust classification. This approach eliminates almost all the false-positive and false-negative 

results, which are always undesirable in biomedical applications. It clearly shows the 

framework has the potential to help clinicians in the timely identification of pathologies and 

treatment plans to provide better patient care and cost-effective infrastructure in the 

healthcare system. 




